Step
*
1
2
2
of Lemma
gamma-neighbourhood-prop4
1. beta : ℕ ⟶ ℕ
2. n0 : finite-nat-seq()
3. x : ℕ
4. n : ℕ
5. ¬↑init-seg-nat-seq(ext-finite-nat-seq(n0**λk.x^(1);0)^(n);n0)
6. ¬((beta x) = 0 ∈ ℤ)
7. ∀y:ℕx. ((beta y) = 0 ∈ ℤ)
8. y : ¬(∃x@0:ℕ
((↑init-seg-nat-seq(n0**λi.x@0^(1);ext-finite-nat-seq(n0**λk.x^(1);0)^(n)))
∧ (¬((beta x@0) = 0 ∈ ℤ))
∧ (∀y:ℕx@0. ((beta y) = 0 ∈ ℤ))))
9. (TERMOF{extend-seq1-all-dec:o, 1:l} ext-finite-nat-seq(n0**λk.x^(1);0)^(n) n0 beta)
= (inr y )
∈ Dec(∃x@0:ℕ
((↑init-seg-nat-seq(n0**λi.x@0^(1);ext-finite-nat-seq(n0**λk.x^(1);0)^(n)))
∧ (¬((beta x@0) = 0 ∈ ℤ))
∧ (∀y:ℕx@0. ((beta y) = 0 ∈ ℤ))))
⊢ (inl 0) = (inl 1) ∈ (ℕ?)
BY
{ ((Assert ⌜False⌝⋅ THEN Auto) THEN Thin (-1) THEN D (-1) THEN InstConcl [⌜x⌝]⋅ THEN Auto) }
1
1. beta : ℕ ⟶ ℕ
2. n0 : finite-nat-seq()
3. x : ℕ
4. n : ℕ
5. ¬↑init-seg-nat-seq(ext-finite-nat-seq(n0**λk.x^(1);0)^(n);n0)
6. ¬((beta x) = 0 ∈ ℤ)
7. ∀y:ℕx. ((beta y) = 0 ∈ ℤ)
8. y : (∃x@0:ℕ
((↑init-seg-nat-seq(n0**λi.x@0^(1);ext-finite-nat-seq(n0**λk.x^(1);0)^(n)))
∧ (¬((beta x@0) = 0 ∈ ℤ))
∧ (∀y:ℕx@0. ((beta y) = 0 ∈ ℤ)))) ⟶ False
⊢ ↑init-seg-nat-seq(n0**λi.x^(1);ext-finite-nat-seq(n0**λk.x^(1);0)^(n))
Latex:
Latex:
1. beta : \mBbbN{} {}\mrightarrow{} \mBbbN{}
2. n0 : finite-nat-seq()
3. x : \mBbbN{}
4. n : \mBbbN{}
5. \mneg{}\muparrow{}init-seg-nat-seq(ext-finite-nat-seq(n0**\mlambda{}k.x\^{}(1);0)\^{}(n);n0)
6. \mneg{}((beta x) = 0)
7. \mforall{}y:\mBbbN{}x. ((beta y) = 0)
8. y : \mneg{}(\mexists{}x@0:\mBbbN{}
((\muparrow{}init-seg-nat-seq(n0**\mlambda{}i.x@0\^{}(1);ext-finite-nat-seq(n0**\mlambda{}k.x\^{}(1);0)\^{}(n)))
\mwedge{} (\mneg{}((beta x@0) = 0))
\mwedge{} (\mforall{}y:\mBbbN{}x@0. ((beta y) = 0))))
9. (TERMOF\{extend-seq1-all-dec:o, 1:l\} ext-finite-nat-seq(n0**\mlambda{}k.x\^{}(1);0)\^{}(n) n0 beta) = (inr y )
\mvdash{} (inl 0) = (inl 1)
By
Latex:
((Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto) THEN Thin (-1) THEN D (-1) THEN InstConcl [\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index