Nuprl Lemma : gamma-neighbourhood-prop4

beta:ℕ ⟶ ℕ. ∀n0:finite-nat-seq(). ∀x,n:ℕ.
  ((¬((beta x) 0 ∈ ℤ))
   (∀y:ℕx. ((beta y) 0 ∈ ℤ))
   (↑isl(gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**λk.x^(1);0)^(n)))
   ((gamma-neighbourhood(beta;n0) ext-finite-nat-seq(n0**λk.x^(1);0)^(n)) (inl 1) ∈ (ℕ?)))


Proof




Definitions occuring in Statement :  ext-finite-nat-seq: ext-finite-nat-seq(f;x) gamma-neighbourhood: gamma-neighbourhood(beta;n0) append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() int_seg: {i..j-} nat: assert: b isl: isl(x) all: x:A. B[x] not: ¬A implies:  Q unit: Unit apply: a lambda: λx.A[x] function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) isl: isl(x) gamma-neighbourhood: gamma-neighbourhood(beta;n0) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  assert: b bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q finite-nat-seq: finite-nat-seq() pi1: fst(t) append-finite-nat-seq: f**g init-seg-nat-seq: init-seg-nat-seq(f;g) pi2: snd(t) ge: i ≥  int_seg: {i..j-} less_than: a < b true: True squash: T lelt: i ≤ j < k mk-finite-nat-seq: f^(n) ext-finite-nat-seq: ext-finite-nat-seq(f;x)
Lemmas referenced :  istype-assert gamma-neighbourhood_wf mk-finite-nat-seq_wf ext-finite-nat-seq_wf append-finite-nat-seq_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le int_seg_wf subtype_rel_function nat_wf int_seg_subtype_nat istype-false subtype_rel_self btrue_wf bfalse_wf istype-nat finite-nat-seq_wf init-seg-nat-seq_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot extend-seq1-all-dec true_wf unit_wf2 assert-init-seg-nat-seq2 nat_properties intformand_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_term_value_add_lemma int_term_value_var_lemma lt_int_wf assert_of_lt_int int_seg_properties istype-less_than iff_weakening_uiff assert_wf less_than_wf istype-top subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma decidable__lt int_seg_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality Error :dependent_set_memberEquality_alt,  natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination sqequalRule Error :universeIsType,  because_Cache setElimination rename independent_pairFormation Error :inhabitedIsType,  Error :equalityIstype,  equalityTransitivity equalitySymmetry Error :functionIsType,  equalityElimination productElimination promote_hyp instantiate cumulativity Error :inlEquality_alt,  Error :productIsType,  closedConclusion addEquality int_eqEquality lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  imageMemberEquality baseClosed imageElimination Error :functionExtensionality_alt

Latex:
\mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n0:finite-nat-seq().  \mforall{}x,n:\mBbbN{}.
    ((\mneg{}((beta  x)  =  0))
    {}\mRightarrow{}  (\mforall{}y:\mBbbN{}x.  ((beta  y)  =  0))
    {}\mRightarrow{}  (\muparrow{}isl(gamma-neighbourhood(beta;n0)  ext-finite-nat-seq(n0**\mlambda{}k.x\^{}(1);0)\^{}(n)))
    {}\mRightarrow{}  ((gamma-neighbourhood(beta;n0)  ext-finite-nat-seq(n0**\mlambda{}k.x\^{}(1);0)\^{}(n))  =  (inl  1)))



Date html generated: 2019_06_20-PM-03_04_28
Last ObjectModification: 2018_12_06-PM-11_34_52

Theory : continuity


Home Index