Nuprl Lemma : extend-seq1-all-dec

n,n0:finite-nat-seq(). ∀beta:ℕ ⟶ ℕ.
  Dec(∃x:ℕ((↑init-seg-nat-seq(n0**λi.x^(1);n)) ∧ ((beta x) 0 ∈ ℤ)) ∧ (∀y:ℕx. ((beta y) 0 ∈ ℤ))))


Proof




Definitions occuring in Statement :  init-seg-nat-seq: init-seg-nat-seq(f;g) append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() int_seg: {i..j-} nat: assert: b decidable: Dec(P) all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: exists: x:A. B[x] and: P ∧ Q uall: [x:A]. B[x] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A implies:  Q false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k finite-nat-seq: finite-nat-seq() decidable: Dec(P) or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) pi2: snd(t) pi1: fst(t) iff: ⇐⇒ Q append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) guard: {T} sq_type: SQType(T) squash: T true: True top: Top less_than: a < b cand: c∧ B rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b init-seg-nat-seq: init-seg-nat-seq(f;g)
Lemmas referenced :  nat_wf assert_wf init-seg-nat-seq_wf append-finite-nat-seq_wf mk-finite-nat-seq_wf istype-void istype-le int_seg_wf not_wf equal-wf-base set_subtype_base le_wf istype-int int_subtype_base int_seg_subtype_nat istype-false decidable__le istype-nat finite-nat-seq_wf decidable__assert decidable__equal_int nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-less_than false_wf assert-init-seg-nat-seq2 subtype_base_sq lelt_wf equal_wf less_than_wf less_than_anti-reflexive top_wf decidable__all_int_seg int_seg_properties istype-assert lt_int_wf eqtt_to_assert assert_of_lt_int istype-top squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff intformeq_wf int_formula_prop_eq_lemma decidable__equal_nat assert-init-seg-nat-seq append-finite-nat-seq-assoc ble_wf assert-ble
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule productEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation voidElimination lambdaEquality_alt universeIsType intEquality applyEquality independent_isectElimination baseClosed functionEquality setElimination rename because_Cache productElimination dependent_functionElimination addEquality unionElimination functionIsType inhabitedIsType approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  productIsType equalitySymmetry equalityTransitivity lambdaFormation inrFormation lambdaEquality dependent_set_memberEquality dependent_pairEquality cumulativity instantiate dependent_pairFormation functionExtensionality applyLambdaEquality hyp_replacement imageElimination imageMemberEquality voidEquality isect_memberEquality axiomSqEquality isect_memberFormation lessCases inlFormation_alt dependent_pairEquality_alt equalityIstype sqequalBase functionExtensionality_alt equalityElimination isect_memberFormation_alt isect_memberEquality_alt isectIsTypeImplies universeEquality promote_hyp

Latex:
\mforall{}n,n0:finite-nat-seq().  \mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.
    Dec(\mexists{}x:\mBbbN{}.  ((\muparrow{}init-seg-nat-seq(n0**\mlambda{}i.x\^{}(1);n))  \mwedge{}  (\mneg{}((beta  x)  =  0))  \mwedge{}  (\mforall{}y:\mBbbN{}x.  ((beta  y)  =  0))))



Date html generated: 2020_05_19-PM-10_05_58
Last ObjectModification: 2020_01_04-PM-08_03_49

Theory : continuity


Home Index