Nuprl Lemma : extend-seq1-all-dec
∀n,n0:finite-nat-seq(). ∀beta:ℕ ⟶ ℕ.
  Dec(∃x:ℕ. ((↑init-seg-nat-seq(n0**λi.x^(1);n)) ∧ (¬((beta x) = 0 ∈ ℤ)) ∧ (∀y:ℕx. ((beta y) = 0 ∈ ℤ))))
Proof
Definitions occuring in Statement : 
init-seg-nat-seq: init-seg-nat-seq(f;g)
, 
append-finite-nat-seq: f**g
, 
mk-finite-nat-seq: f^(n)
, 
finite-nat-seq: finite-nat-seq()
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
finite-nat-seq: finite-nat-seq()
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
iff: P 
⇐⇒ Q
, 
append-finite-nat-seq: f**g
, 
mk-finite-nat-seq: f^(n)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
true: True
, 
top: Top
, 
less_than: a < b
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
init-seg-nat-seq: init-seg-nat-seq(f;g)
Lemmas referenced : 
nat_wf, 
assert_wf, 
init-seg-nat-seq_wf, 
append-finite-nat-seq_wf, 
mk-finite-nat-seq_wf, 
istype-void, 
istype-le, 
int_seg_wf, 
not_wf, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
int_seg_subtype_nat, 
istype-false, 
decidable__le, 
istype-nat, 
finite-nat-seq_wf, 
decidable__assert, 
decidable__equal_int, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
istype-less_than, 
false_wf, 
assert-init-seg-nat-seq2, 
subtype_base_sq, 
lelt_wf, 
equal_wf, 
less_than_wf, 
less_than_anti-reflexive, 
top_wf, 
decidable__all_int_seg, 
int_seg_properties, 
istype-assert, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__equal_nat, 
assert-init-seg-nat-seq, 
append-finite-nat-seq-assoc, 
ble_wf, 
assert-ble
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
productEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
voidElimination, 
lambdaEquality_alt, 
universeIsType, 
intEquality, 
applyEquality, 
independent_isectElimination, 
baseClosed, 
functionEquality, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
functionIsType, 
inhabitedIsType, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
productIsType, 
equalitySymmetry, 
equalityTransitivity, 
lambdaFormation, 
inrFormation, 
lambdaEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
cumulativity, 
instantiate, 
dependent_pairFormation, 
functionExtensionality, 
applyLambdaEquality, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
voidEquality, 
isect_memberEquality, 
axiomSqEquality, 
isect_memberFormation, 
lessCases, 
inlFormation_alt, 
dependent_pairEquality_alt, 
equalityIstype, 
sqequalBase, 
functionExtensionality_alt, 
equalityElimination, 
isect_memberFormation_alt, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeEquality, 
promote_hyp
Latex:
\mforall{}n,n0:finite-nat-seq().  \mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.
    Dec(\mexists{}x:\mBbbN{}.  ((\muparrow{}init-seg-nat-seq(n0**\mlambda{}i.x\^{}(1);n))  \mwedge{}  (\mneg{}((beta  x)  =  0))  \mwedge{}  (\mforall{}y:\mBbbN{}x.  ((beta  y)  =  0))))
Date html generated:
2020_05_19-PM-10_05_58
Last ObjectModification:
2020_01_04-PM-08_03_49
Theory : continuity
Home
Index