Nuprl Lemma : assert-ble

[n:ℤ]. ∀[m:ℕ].  (↑ble(n;m) ⇐⇒ n ≤ m)


Proof




Definitions occuring in Statement :  ble: ble(n;m) nat: assert: b uall: [x:A]. B[x] le: A ≤ B iff: ⇐⇒ Q int:
Definitions unfolded in proof :  ble: ble(n;m) member: t ∈ T uall: [x:A]. B[x] nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  iff: ⇐⇒ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: rev_implies:  Q true: True bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb nequal: a ≠ b ∈  less_than: a < b less_than': less_than'(a;b) squash: T le: A ≤ B
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf true_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int top_wf less_than_wf intformless_wf int_formula_prop_less_lemma false_wf less_than'_wf assert_wf ble_wf nat_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule int_eqReduceTrueSq independent_pairFormation dependent_functionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache promote_hyp instantiate cumulativity independent_functionElimination int_eqReduceFalseSq lessCases isect_memberFormation sqequalAxiom imageMemberEquality baseClosed imageElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[m:\mBbbN{}].    (\muparrow{}ble(n;m)  \mLeftarrow{}{}\mRightarrow{}  n  \mleq{}  m)



Date html generated: 2017_04_20-AM-07_29_18
Last ObjectModification: 2017_02_27-PM-06_00_02

Theory : continuity


Home Index