Nuprl Lemma : append-finite-nat-seq-assoc

[f,g,h:finite-nat-seq()].  (f**g**h f**g**h ∈ finite-nat-seq())


Proof




Definitions occuring in Statement :  append-finite-nat-seq: f**g finite-nat-seq: finite-nat-seq() uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T finite-nat-seq: finite-nat-seq() append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: and: P ∧ Q int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True squash: T lelt: i ≤ j < k bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B subtype_rel: A ⊆B subtract: m
Lemmas referenced :  nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma le_wf int_seg_wf nat_wf finite-nat-seq_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot subtract_wf int_seg_properties itermSubtract_wf int_term_value_subtract_lemma intformless_wf int_formula_prop_less_lemma minus-add minus-one-mul add-swap add-commutes add-associates decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule dependent_pairEquality extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename dependent_functionElimination addEquality unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality because_Cache independent_pairFormation functionEquality axiomEquality functionExtensionality lambdaFormation equalityElimination equalityTransitivity equalitySymmetry lessCases sqequalAxiom imageMemberEquality baseClosed imageElimination independent_functionElimination applyEquality promote_hyp instantiate cumulativity

Latex:
\mforall{}[f,g,h:finite-nat-seq()].    (f**g**h  =  f**g**h)



Date html generated: 2017_04_20-AM-07_29_49
Last ObjectModification: 2017_02_27-PM-06_01_03

Theory : continuity


Home Index