Nuprl Lemma : init0-implies-eq-upto1-zero-seq

a:ℕ ⟶ ℕ(init0(a)  (a 0s ∈ (ℕ1 ⟶ ℕ)))


Proof




Definitions occuring in Statement :  init0: init0(a) zero-seq: 0s int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B init0: init0(a) less_than': less_than'(a;b) le: A ≤ B zero-seq: 0s sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] nat: prop: top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} guard: {T} member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  init0_wf int_seg_wf equal_wf and_wf false_wf int_subtype_base set_subtype_base nat_wf subtype_base_sq le_wf decidable__le int_formula_prop_wf int_formula_prop_le_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int int_seg_properties
Rules used in proof :  functionEquality applyEquality applyLambdaEquality levelHypothesis addLevel hyp_replacement independent_functionElimination cumulativity instantiate because_Cache equalitySymmetry equalityTransitivity dependent_set_memberEquality computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination unionElimination dependent_functionElimination productElimination rename setElimination hypothesis hypothesisEquality natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction functionExtensionality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (init0(a)  {}\mRightarrow{}  (a  =  0s))



Date html generated: 2017_04_21-AM-11_23_00
Last ObjectModification: 2017_04_20-PM-04_48_02

Theory : continuity


Home Index