Step
*
1
1
1
1
1
of Lemma
monotone-bar-induction8-implies-3
.....upcase.....
1. ∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
((∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s])))
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f])))
⇒ ⇃(Q[0;λx.⊥]))
2. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
6. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
7. ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
8. f : ℕ ⟶ ℕ
9. m : ℕ
10. B[m;f]
11. k : ℤ
12. [%8] : 0 < k
13. B[m + (k - 1);f]
⊢ B[m + k;f]
BY
{ ((InstHyp [⌜m + (k - 1)⌝;⌜f⌝] (-10)⋅ THEN Try (CpltAuto)) THEN (Subst ⌜(m + (k - 1)) + 1 ~ m + k⌝ (-1)⋅ THENA Auto)) }
1
1. ∀Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
((∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s])))
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f])))
⇒ ⇃(Q[0;λx.⊥]))
2. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
6. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
7. ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
8. f : ℕ ⟶ ℕ
9. m : ℕ
10. B[m;f]
11. k : ℤ
12. [%8] : 0 < k
13. B[m + (k - 1);f]
14. ∀m@0:ℕ. B[m + k;f.m@0@m + (k - 1)]
⊢ B[m + k;f]
Latex:
Latex:
.....upcase.....
1. \mforall{}Q:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
((\mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. \00D9(Q[n + 1;s.m@n])) {}\mRightarrow{} \00D9(Q[n;s])))
{}\mRightarrow{} (\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}n:\mBbbN{}. \mforall{}m:\{n...\}. \00D9(Q[m;f])))
{}\mRightarrow{} \00D9(Q[0;\mlambda{}x.\mbot{}]))
2. B : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
3. Q : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
4. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} (\mforall{}m:\mBbbN{}. B[n + 1;s.m@n]))
5. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} \00D9(Q[n;s]))
6. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. \00D9(Q[n + 1;s.m@n])) {}\mRightarrow{} \00D9(Q[n;s]))
7. \mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}m:\mBbbN{}. B[m;alpha])
8. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
9. m : \mBbbN{}
10. B[m;f]
11. k : \mBbbZ{}
12. [\%8] : 0 < k
13. B[m + (k - 1);f]
\mvdash{} B[m + k;f]
By
Latex:
((InstHyp [\mkleeneopen{}m + (k - 1)\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}] (-10)\mcdot{} THEN Try (CpltAuto))
THEN (Subst \mkleeneopen{}(m + (k - 1)) + 1 \msim{} m + k\mkleeneclose{} (-1)\mcdot{} THENA Auto)
)
Home
Index