Nuprl Lemma : not-d-CCC-infinite

[A:Type]. ((∃f:A ⟶ ℕSurj(A;ℕ;f))  dCCC(A)))


Proof




Definitions occuring in Statement :  contra-dcc: dCCC(T) surject: Surj(A;B;f) nat: uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  exists: x:A. B[x] prop: false: False not: ¬A implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe surject_wf istype-nat contra-dcc_wf not-d-CCC-nat nat_wf d-CCC-surjection
Rules used in proof :  universeEquality instantiate Error :inhabitedIsType,  Error :functionIsTypeImplies,  dependent_functionElimination Error :lambdaEquality_alt,  Error :functionIsType,  Error :productIsType,  sqequalRule Error :universeIsType,  because_Cache voidElimination independent_functionElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin Error :lambdaFormation_alt,  cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:Type].  ((\mexists{}f:A  {}\mrightarrow{}  \mBbbN{}.  Surj(A;\mBbbN{};f))  {}\mRightarrow{}  (\mneg{}dCCC(A)))



Date html generated: 2019_06_20-PM-03_00_54
Last ObjectModification: 2019_06_12-PM-08_58_50

Theory : continuity


Home Index