Nuprl Lemma : strong-continuity2_biject_retract-ext

[T,S,U:Type].
  ∀r:ℕ ⟶ U
    ((U ⊆r ℕ)
     (∀x:U. ((r x) x ∈ U))
     (∀g:S ⟶ U
          (Bij(S;U;g)
           (∀F:(ℕ ⟶ T) ⟶ S
                (strong-continuity2(T;g F)
                 (∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (S?)
                     ∀f:ℕ ⟶ T
                       ((∃n:ℕ((M f) (inl (F f)) ∈ (S?)))
                       ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (S?) supposing ↑isl(M f)))))))))


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) biject: Bij(A;B;f) compose: g int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T bij_inv: bij_inv(bi) pi1: fst(t) pi2: snd(t) strong-continuity2_biject_retract biject-inverse uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  strong-continuity2_biject_retract lifting-strict-spread istype-void strict4-apply strict4-spread biject-inverse
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}[T,S,U:Type].
    \mforall{}r:\mBbbN{}  {}\mrightarrow{}  U
        ((U  \msubseteq{}r  \mBbbN{})
        {}\mRightarrow{}  (\mforall{}x:U.  ((r  x)  =  x))
        {}\mRightarrow{}  (\mforall{}g:S  {}\mrightarrow{}  U
                    (Bij(S;U;g)
                    {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  S
                                (strong-continuity2(T;g  o  F)
                                {}\mRightarrow{}  (\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (S?)
                                          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
                                              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                              \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))))))))



Date html generated: 2019_06_20-PM-02_50_34
Last ObjectModification: 2019_03_26-AM-07_44_57

Theory : continuity


Home Index