Nuprl Lemma : decidable__equal_Id
∀a,b:Id.  Dec(a = b ∈ Id)
Proof
Definitions occuring in Statement : 
Id: Id
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
Id_wf, 
assert_wf, 
eq_id_wf, 
all_wf, 
decidable_wf, 
decidable_functionality, 
iff_weakening_uiff, 
assert-eq-id, 
decidable__assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
addLevel, 
allFunctionality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination
Latex:
\mforall{}a,b:Id.    Dec(a  =  b)
Date html generated:
2016_05_14-PM-03_37_24
Last ObjectModification:
2015_12_26-PM-05_58_48
Theory : decidable!equality
Home
Index