Nuprl Lemma : decidable__equal_Id

a,b:Id.  Dec(a b ∈ Id)


Proof




Definitions occuring in Statement :  Id: Id decidable: Dec(P) all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop: implies:  Q uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf Id_wf assert_wf eq_id_wf all_wf decidable_wf decidable_functionality iff_weakening_uiff assert-eq-id decidable__assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality sqequalRule lambdaEquality addLevel allFunctionality independent_functionElimination productElimination independent_pairFormation lambdaFormation dependent_functionElimination

Latex:
\mforall{}a,b:Id.    Dec(a  =  b)



Date html generated: 2016_05_14-PM-03_37_24
Last ObjectModification: 2015_12_26-PM-05_58_48

Theory : decidable!equality


Home Index