Nuprl Lemma : list-diff-cons
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List]. ∀[x:T].
  ([x / as]-bs = if x ∈b bs then as-bs else [x / as-bs] fi  ∈ (T List))
Proof
Definitions occuring in Statement : 
list-diff: as-bs, 
deq-member: x ∈b L, 
cons: [a / b], 
list: T List, 
deq: EqDecider(T), 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
list-diff: as-bs, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
top: Top, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
bfalse: ff, 
prop: ℙ, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q
Lemmas referenced : 
deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-member, 
filter_cons_lemma, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].  \mforall{}[x:T].
    ([x  /  as]-bs  =  if  x  \mmember{}\msubb{}  bs  then  as-bs  else  [x  /  as-bs]  fi  )
Date html generated:
2017_04_17-AM-09_12_55
Last ObjectModification:
2017_02_27-PM-05_19_42
Theory : decidable!equality
Home
Index