Nuprl Lemma : no_rel_repeats_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[l:T List].  (no_rel_repeats(T;R;l) ∈ ℙ)


Proof




Definitions occuring in Statement :  no_rel_repeats: no_rel_repeats(T;R;l) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T no_rel_repeats: no_rel_repeats(T;R;l) so_lambda: λ2x.t[x] implies:  Q prop: nat: uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s]
Lemmas referenced :  list_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties select_wf equal_wf not_wf length_wf less_than_wf nat_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache functionEquality setElimination rename hypothesisEquality cumulativity applyEquality independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[l:T  List].    (no\_rel\_repeats(T;R;l)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_25_35
Last ObjectModification: 2016_01_14-PM-11_22_10

Theory : decidable!equality


Home Index