Nuprl Lemma : no_repeats_list-diff

[T:Type]. ∀[L1,L2:T List]. ∀[eq:EqDecider(T)].  no_repeats(T;L1-L2) supposing no_repeats(T;L1)


Proof




Definitions occuring in Statement :  list-diff: as-bs no_repeats: no_repeats(T;l) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  list-diff: as-bs uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop:
Lemmas referenced :  no_repeats_filter bnot_wf deq-member_wf list-diff_wf no_repeats_wf deq_wf list_wf no_repeats_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis independent_isectElimination because_Cache universeEquality isect_memberFormation introduction independent_functionElimination sqequalRule isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].  \mforall{}[eq:EqDecider(T)].    no\_repeats(T;L1-L2)  supposing  no\_repeats(T;L1)



Date html generated: 2016_05_14-PM-03_30_14
Last ObjectModification: 2015_12_26-PM-06_02_44

Theory : decidable!equality


Home Index