Nuprl Lemma : remove-repeats-fun-sublist
∀[A,B:Type].  ∀eq:EqDecider(B). ∀f:A ⟶ B. ∀L:A List.  remove-repeats-fun(eq;f;L) ⊆ L
Proof
Definitions occuring in Statement : 
remove-repeats-fun: remove-repeats-fun(eq;f;L)
, 
sublist: L1 ⊆ L2
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
remove-repeats-fun: remove-repeats-fun(eq;f;L)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
, 
deq: EqDecider(T)
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
sublist_wf, 
remove-repeats-fun_wf, 
list_wf, 
list_ind_nil_lemma, 
nil-sublist, 
list_ind_cons_lemma, 
deq_wf, 
filter_wf5, 
bnot_wf, 
l_member_wf, 
filter_is_sublist, 
sublist_transitivity, 
cons_wf, 
cons_sublist_cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
because_Cache, 
functionEquality, 
universeEquality, 
applyEquality, 
setElimination, 
setEquality, 
inlFormation, 
independent_pairFormation, 
productElimination
Latex:
\mforall{}[A,B:Type].    \mforall{}eq:EqDecider(B).  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L:A  List.    remove-repeats-fun(eq;f;L)  \msubseteq{}  L
Date html generated:
2016_05_14-PM-03_28_30
Last ObjectModification:
2015_12_26-PM-06_24_22
Theory : decidable!equality
Home
Index