Nuprl Lemma : remove-repeats-fun-sublist

[A,B:Type].  ∀eq:EqDecider(B). ∀f:A ⟶ B. ∀L:A List.  remove-repeats-fun(eq;f;L) ⊆ L


Proof




Definitions occuring in Statement :  remove-repeats-fun: remove-repeats-fun(eq;f;L) sublist: L1 ⊆ L2 list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q remove-repeats-fun: remove-repeats-fun(eq;f;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop: deq: EqDecider(T) or: P ∨ Q and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction sublist_wf remove-repeats-fun_wf list_wf list_ind_nil_lemma nil-sublist list_ind_cons_lemma deq_wf filter_wf5 bnot_wf l_member_wf filter_is_sublist sublist_transitivity cons_wf cons_sublist_cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality rename because_Cache functionEquality universeEquality applyEquality setElimination setEquality inlFormation independent_pairFormation productElimination

Latex:
\mforall{}[A,B:Type].    \mforall{}eq:EqDecider(B).  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L:A  List.    remove-repeats-fun(eq;f;L)  \msubseteq{}  L



Date html generated: 2016_05_14-PM-03_28_30
Last ObjectModification: 2015_12_26-PM-06_24_22

Theory : decidable!equality


Home Index