Nuprl Lemma : eqof_equal_btrue
∀[A:Type]. ∀[d:EqDecider(A)]. ∀[i,j:A].  eqof(d) i j ~ tt supposing i = j ∈ A
Proof
Definitions occuring in Statement : 
eqof: eqof(d), 
deq: EqDecider(T), 
btrue: tt, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
universe: Type, 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
true: True, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
eqof_wf, 
btrue_wf, 
equal_wf, 
true_wf, 
safe-assert-deq, 
assert_wf, 
iff_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[d:EqDecider(A)].  \mforall{}[i,j:A].    eqof(d)  i  j  \msim{}  tt  supposing  i  =  j
Date html generated:
2016_05_14-AM-06_06_45
Last ObjectModification:
2015_12_26-AM-11_46_42
Theory : equality!deciders
Home
Index