Nuprl Lemma : nat-deq_wf
NatDeq ∈ EqDecider(ℕ)
Proof
Definitions occuring in Statement : 
nat-deq: NatDeq, 
deq: EqDecider(T), 
nat: ℕ, 
member: t ∈ T
Definitions unfolded in proof : 
deq: EqDecider(T), 
nat-deq: NatDeq, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
squash: ↓T, 
le: A ≤ B, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
iff_wf, 
all_wf, 
assert_wf, 
assert_of_eq_int, 
le_wf, 
equal_wf, 
nat_wf, 
eq_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
applyEquality, 
imageMemberEquality, 
baseClosed, 
equalityUniverse, 
levelHypothesis, 
introduction, 
productElimination, 
natural_numberEquality, 
intEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
NatDeq  \mmember{}  EqDecider(\mBbbN{})
Date html generated:
2016_05_14-AM-06_07_00
Last ObjectModification:
2016_01_14-PM-07_31_53
Theory : equality!deciders
Home
Index