Nuprl Lemma : subtype-deq
∀[A,B:Type].  (EqDecider(B) ⊆r EqDecider(A)) supposing ((∀x,y:A.  ((x = y ∈ B) 
⇒ (x = y ∈ A))) and (A ⊆r B))
Proof
Definitions occuring in Statement : 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
deq: EqDecider(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
subtype_rel_dep_function, 
bool_wf, 
subtype_rel_self, 
equal_wf, 
assert_wf, 
all_wf, 
iff_wf, 
deq_wf, 
subtype_rel_wf, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
functionEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
because_Cache, 
independent_pairFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination
Latex:
\mforall{}[A,B:Type].
    (EqDecider(B)  \msubseteq{}r  EqDecider(A))  supposing  ((\mforall{}x,y:A.    ((x  =  y)  {}\mRightarrow{}  (x  =  y)))  and  (A  \msubseteq{}r  B))
Date html generated:
2019_06_20-PM-00_32_04
Last ObjectModification:
2018_09_17-PM-05_40_27
Theory : equality!deciders
Home
Index