Nuprl Lemma : equipollent-cardinality-le
∀[A:Type]. ∀[k:ℕ].  (A ~ ℕk 
⇒ |A| ≤ k)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
cardinality-le: |T| ≤ n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
and: P ∧ Q
, 
cardinality-le: |T| ≤ n
, 
prop: ℙ
, 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
biject-inverse, 
int_seg_wf, 
equipollent_wf, 
nat_wf, 
surject_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
universeEquality, 
dependent_pairFormation, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  \mforall{}[k:\mBbbN{}].    (A  \msim{}  \mBbbN{}k  {}\mRightarrow{}  |A|  \mleq{}  k)
Date html generated:
2018_05_21-PM-00_52_24
Last ObjectModification:
2018_05_19-AM-06_39_31
Theory : equipollence!!cardinality!
Home
Index