Nuprl Lemma : equipollent-cardinality-le

[A:Type]. ∀[k:ℕ].  (A ~ ℕ |A| ≤ k)


Proof




Definitions occuring in Statement :  equipollent: B cardinality-le: |T| ≤ n int_seg: {i..j-} nat: uall: [x:A]. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equipollent: B exists: x:A. B[x] member: t ∈ T nat: and: P ∧ Q cardinality-le: |T| ≤ n prop: surject: Surj(A;B;f) all: x:A. B[x] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  biject-inverse int_seg_wf equipollent_wf nat_wf surject_wf equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality natural_numberEquality setElimination rename because_Cache hypothesis independent_functionElimination universeEquality dependent_pairFormation applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[k:\mBbbN{}].    (A  \msim{}  \mBbbN{}k  {}\mRightarrow{}  |A|  \mleq{}  k)



Date html generated: 2018_05_21-PM-00_52_24
Last ObjectModification: 2018_05_19-AM-06_39_31

Theory : equipollence!!cardinality!


Home Index