Nuprl Lemma : equipollent-identity-right

[A:Type]. A × Top A


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] top: Top product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  top_wf equipollent-identity-left equipollent_functionality_wrt_equipollent equipollent-product-com equipollent_weakening_ext-eq ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation universeEquality productEquality hypothesisEquality thin cut lemma_by_obid hypothesis because_Cache sqequalHypSubstitution isectElimination independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[A:Type].  A  \mtimes{}  Top  \msim{}  A



Date html generated: 2016_05_14-PM-04_01_01
Last ObjectModification: 2015_12_26-PM-07_43_45

Theory : equipollence!!cardinality!


Home Index