Nuprl Lemma : equipollent-length

[T:Type]. ∀L:T List. ((∀x,y:T.  Dec(x y ∈ T))  {x:T| (x ∈ L)}  ~ ℕ||L|| supposing no_repeats(T;L))


Proof




Definitions occuring in Statement :  equipollent: B no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List int_seg: {i..j-} decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] cand: c∧ B subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  list_wf decidable_wf all_wf equal_wf no_repeats_wf and_wf set_wf sq_stable__l_member l_member-set length_wf no_repeats-subtype list-subtype length_wf_nat l_member_wf equipollent-iff-list no_repeats_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename setEquality dependent_functionElimination productElimination dependent_pairFormation cumulativity equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality setElimination because_Cache independent_pairFormation sqequalRule imageMemberEquality baseClosed imageElimination intEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  \{x:T|  (x  \mmember{}  L)\}    \msim{}  \mBbbN{}||L||  supposing  no\_repeats(T;L))



Date html generated: 2016_05_14-PM-04_03_43
Last ObjectModification: 2016_01_14-PM-11_05_29

Theory : equipollence!!cardinality!


Home Index