Step
*
2
2
3
2
1
1
1
of Lemma
equipollent-quotient
1. A : Type
2. E : A ⟶ A ⟶ 𝔹
3. EquivRel(A;x,y.↑(E x y))
4. {E ∈ (x,y:A//(↑(E x y))) ⟶ A ⟶ 𝔹}
5. Refl(A;x,y.↑(E x y))
6. Sym(A;x,y.↑(E x y))
7. Trans(A;x,y.↑(E x y))
8. istype(A)
9. ∀x,y:A. istype(↑(E x y))
10. ∀x:A. (↑(E x x))
11. a1 : Base
12. b : Base
13. c : a1 = b ∈ pertype(λx,y. ((x ∈ A) ∧ (y ∈ A) ∧ (↑(E x y))))
14. a1 ∈ A
15. b ∈ A
16. ↑(E a1 b)
17. b1 : A
18. ↑(E a1 b1)
⊢ b1 = a1 ∈ (x,y:A//(↑(E x y)))
BY
{ (EqTypeCD THEN Auto) }
Latex:
Latex:
1. A : Type
2. E : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbB{}
3. EquivRel(A;x,y.\muparrow{}(E x y))
4. \{E \mmember{} (x,y:A//(\muparrow{}(E x y))) {}\mrightarrow{} A {}\mrightarrow{} \mBbbB{}\}
5. Refl(A;x,y.\muparrow{}(E x y))
6. Sym(A;x,y.\muparrow{}(E x y))
7. Trans(A;x,y.\muparrow{}(E x y))
8. istype(A)
9. \mforall{}x,y:A. istype(\muparrow{}(E x y))
10. \mforall{}x:A. (\muparrow{}(E x x))
11. a1 : Base
12. b : Base
13. c : a1 = b
14. a1 \mmember{} A
15. b \mmember{} A
16. \muparrow{}(E a1 b)
17. b1 : A
18. \muparrow{}(E a1 b1)
\mvdash{} b1 = a1
By
Latex:
(EqTypeCD THEN Auto)
Home
Index