Nuprl Lemma : equipollent-singleton-domain

[S:Type]. ∀s:singleton-type(S). ∀[A:S ⟶ Type]. u:S ⟶ (A u) (fst(s))


Proof




Definitions occuring in Statement :  singleton-type: singleton-type(A) equipollent: B uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] singleton-type: singleton-type(A) exists: x:A. B[x] member: t ∈ T implies:  Q pi1: fst(t) equipollent: B subtype_rel: A ⊆B uimplies: supposing a squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f)
Lemmas referenced :  equipollent_inversion singleton-type_wf istype-universe subtype_rel-equal equal_wf iff_weakening_equal biject_wf squash_wf true_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin rename cut introduction extract_by_obid isectElimination applyEquality hypothesisEquality independent_pairEquality inhabitedIsType hypothesis sqequalRule equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination functionEquality functionIsType universeIsType instantiate universeEquality dependent_pairFormation_alt lambdaEquality_alt independent_isectElimination imageElimination because_Cache natural_numberEquality imageMemberEquality baseClosed independent_pairFormation applyLambdaEquality functionExtensionality_alt

Latex:
\mforall{}[S:Type].  \mforall{}s:singleton-type(S).  \mforall{}[A:S  {}\mrightarrow{}  Type].  u:S  {}\mrightarrow{}  (A  u)  \msim{}  A  (fst(s))



Date html generated: 2020_05_19-PM-10_00_28
Last ObjectModification: 2020_01_04-PM-08_00_35

Theory : equipollence!!cardinality!


Home Index