Step
*
2
1
of Lemma
equipollent-sum
1. n : ℤ
2. [%1] : 0 < n
3. ∀f:ℕn - 1 ⟶ ℕ. i:ℕn - 1 × ℕf[i] ~ ℕΣ(f[i] | i < n - 1)
4. f : ℕn ⟶ ℕ
5. i:ℕn - 1 × ℕf[i] ~ ℕΣ(f[i] | i < n - 1)
⊢ i:ℕn × ℕf[i] ~ ℕΣ(f[i] | i < n)
BY
{ TACTIC:Assert ⌜i:ℕn × ℕf[i] ~ i:ℕn - 1 × ℕf[i] + ℕf[n - 1]⌝⋅ }
1
.....assertion.....
1. n : ℤ
2. [%1] : 0 < n
3. ∀f:ℕn - 1 ⟶ ℕ. i:ℕn - 1 × ℕf[i] ~ ℕΣ(f[i] | i < n - 1)
4. f : ℕn ⟶ ℕ
5. i:ℕn - 1 × ℕf[i] ~ ℕΣ(f[i] | i < n - 1)
⊢ i:ℕn × ℕf[i] ~ i:ℕn - 1 × ℕf[i] + ℕf[n - 1]
2
1. n : ℤ
2. [%1] : 0 < n
3. ∀f:ℕn - 1 ⟶ ℕ. i:ℕn - 1 × ℕf[i] ~ ℕΣ(f[i] | i < n - 1)
4. f : ℕn ⟶ ℕ
5. i:ℕn - 1 × ℕf[i] ~ ℕΣ(f[i] | i < n - 1)
6. i:ℕn × ℕf[i] ~ i:ℕn - 1 × ℕf[i] + ℕf[n - 1]
⊢ i:ℕn × ℕf[i] ~ ℕΣ(f[i] | i < n)
Latex:
Latex:
1. n : \mBbbZ{}
2. [\%1] : 0 < n
3. \mforall{}f:\mBbbN{}n - 1 {}\mrightarrow{} \mBbbN{}. i:\mBbbN{}n - 1 \mtimes{} \mBbbN{}f[i] \msim{} \mBbbN{}\mSigma{}(f[i] | i < n - 1)
4. f : \mBbbN{}n {}\mrightarrow{} \mBbbN{}
5. i:\mBbbN{}n - 1 \mtimes{} \mBbbN{}f[i] \msim{} \mBbbN{}\mSigma{}(f[i] | i < n - 1)
\mvdash{} i:\mBbbN{}n \mtimes{} \mBbbN{}f[i] \msim{} \mBbbN{}\mSigma{}(f[i] | i < n)
By
Latex:
TACTIC:Assert \mkleeneopen{}i:\mBbbN{}n \mtimes{} \mBbbN{}f[i] \msim{} i:\mBbbN{}n - 1 \mtimes{} \mBbbN{}f[i] + \mBbbN{}f[n - 1]\mkleeneclose{}\mcdot{}
Home
Index