Nuprl Lemma : equipollent-sum

n:ℕ. ∀f:ℕn ⟶ ℕ.  i:ℕn × ℕf[i] ~ ℕΣ(f[i] i < n)


Proof




Definitions occuring in Statement :  equipollent: B sum: Σ(f[x] x < k) int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) subtract: m true: True equipollent: B bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  sq_type: SQType(T) less_than: a < b squash: T bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) cand: c∧ B outr: outr(x) istype: istype(T) isl: isl(x) ge: i ≥ 
Lemmas referenced :  int_seg_wf subtract_wf istype-nat equipollent_wf sum_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-less_than primrec-wf2 all_wf nat_wf int_seg_properties satisfiable-full-omega-tt equipollent-zero subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self eq_int_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base decidable__lt intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_subtype_base bool_cases_sqequal bool_wf assert-bnot neg_assert_of_eq_int biject_wf product_subtype_base set_subtype_base lelt_wf assert_wf bnot_wf not_wf equal-wf-base istype-assert bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot decidable__equal_int iff_imp_equal_bool btrue_wf bfalse_wf true_wf btrue_neq_bfalse equal_wf squash_wf istype-universe eq_int_eq_true iff_weakening_equal assert_elim union_subtype_base equal_functionality_wrt_subtype_rel2 subtype_rel_product less_than_wf le_wf base_wf subtype_rel-equal equipollent_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent_same union_functionality_wrt_equipollent istype-top assert_of_lt_int lt_int_wf sum-unroll equipollent-add nat_properties non_neg_sum
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin rename setElimination sqequalRule Error :functionIsType,  Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesisEquality hypothesis productEquality applyEquality because_Cache closedConclusion Error :dependent_set_memberEquality_alt,  dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :setIsType,  functionEquality Error :inhabitedIsType,  lambdaFormation functionExtensionality lambdaEquality productElimination dependent_pairFormation intEquality isect_memberEquality voidEquality computeAll addEquality minusEquality multiplyEquality equalityElimination Error :inrEquality_alt,  instantiate cumulativity equalityTransitivity equalitySymmetry Error :productIsType,  imageElimination Error :equalityIsType4,  baseApply baseClosed promote_hyp Error :inlEquality_alt,  Error :dependent_pairEquality_alt,  Error :equalityIstype,  unionEquality Error :unionIsType,  sqequalBase applyLambdaEquality universeEquality imageMemberEquality Error :equalityIsType3,  Error :equalityIsType1,  axiomSqEquality Error :isect_memberFormation_alt,  lessCases

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    i:\mBbbN{}n  \mtimes{}  \mBbbN{}f[i]  \msim{}  \mBbbN{}\mSigma{}(f[i]  |  i  <  n)



Date html generated: 2019_06_20-PM-02_17_28
Last ObjectModification: 2018_11_24-PM-08_52_34

Theory : equipollence!!cardinality!


Home Index