Nuprl Lemma : equipollent-add

a,b:ℕ.  ℕ+ ℕ~ ℕb


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] union: left right add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b uiff: uiff(P;Q) biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) guard: {T}
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_seg_properties nat_wf biject_wf equal_wf int_seg_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf decidable__le add-member-int_seg1 lelt_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation lambdaEquality unionElimination thin sqequalRule sqequalHypSubstitution setElimination rename dependent_set_memberEquality hypothesisEquality productElimination independent_pairFormation hypothesis cut lemma_by_obid isectElimination dependent_functionElimination addEquality natural_numberEquality independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache unionEquality introduction inlEquality equalityTransitivity equalitySymmetry applyEquality setEquality inrEquality

Latex:
\mforall{}a,b:\mBbbN{}.    \mBbbN{}a  +  \mBbbN{}b  \msim{}  \mBbbN{}a  +  b



Date html generated: 2016_05_14-PM-04_01_28
Last ObjectModification: 2016_01_14-PM-11_07_01

Theory : equipollence!!cardinality!


Home Index