Nuprl Lemma : equipollent-add
∀a,b:ℕ.  ℕa + ℕb ~ ℕa + b
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
union: left + right
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
surject: Surj(A;B;f)
, 
guard: {T}
Lemmas referenced : 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
int_seg_properties, 
nat_wf, 
biject_wf, 
equal_wf, 
int_seg_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
decidable__le, 
add-member-int_seg1, 
lelt_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformle_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
unionElimination, 
thin, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
hypothesis, 
cut, 
lemma_by_obid, 
isectElimination, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
unionEquality, 
introduction, 
inlEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setEquality, 
inrEquality
Latex:
\mforall{}a,b:\mBbbN{}.    \mBbbN{}a  +  \mBbbN{}b  \msim{}  \mBbbN{}a  +  b
Date html generated:
2016_05_14-PM-04_01_28
Last ObjectModification:
2016_01_14-PM-11_07_01
Theory : equipollence!!cardinality!
Home
Index