Nuprl Lemma : finite-iff-listable
∀[T:Type]. (finite(T) 
⇐⇒ ∃L:T List. (no_repeats(T;L) ∧ (∀x:T. (x ∈ L))))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
finite: finite(T)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
nat: ℕ
Lemmas referenced : 
finite_wf, 
exists_wf, 
list_wf, 
no_repeats_wf, 
all_wf, 
l_member_wf, 
equipollent-iff-list, 
length_wf_nat, 
equipollent_wf, 
int_seg_wf, 
length_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
natural_numberEquality, 
setElimination, 
rename, 
intEquality
Latex:
\mforall{}[T:Type].  (finite(T)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  (no\_repeats(T;L)  \mwedge{}  (\mforall{}x:T.  (x  \mmember{}  L))))
Date html generated:
2017_04_17-AM-09_33_46
Last ObjectModification:
2017_02_27-PM-05_32_47
Theory : equipollence!!cardinality!
Home
Index