Nuprl Lemma : finite-iff-listable

[T:Type]. (finite(T) ⇐⇒ ∃L:T List. (no_repeats(T;L) ∧ (∀x:T. (x ∈ L))))


Proof




Definitions occuring in Statement :  finite: finite(T) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] finite: finite(T) exists: x:A. B[x] cand: c∧ B nat:
Lemmas referenced :  finite_wf exists_wf list_wf no_repeats_wf all_wf l_member_wf equipollent-iff-list length_wf_nat equipollent_wf int_seg_wf length_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality universeEquality productElimination dependent_functionElimination independent_functionElimination dependent_pairFormation natural_numberEquality setElimination rename intEquality

Latex:
\mforall{}[T:Type].  (finite(T)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  (no\_repeats(T;L)  \mwedge{}  (\mforall{}x:T.  (x  \mmember{}  L))))



Date html generated: 2017_04_17-AM-09_33_46
Last ObjectModification: 2017_02_27-PM-05_32_47

Theory : equipollence!!cardinality!


Home Index