Step
*
1
2
of Lemma
function_functionality_wrt_equipollent
1. [A] : Type
2. [B] : A ⟶ Type
3. [C] : A ⟶ Type
4. ∀a:A. ∃f:B[a] ⟶ C[a]. Bij(B[a];C[a];f)
5. F : a:A ⟶ B[a] ⟶ C[a]
6. ∀a:A. Bij(B[a];C[a];F a)
7. b : a:A ⟶ C[a]
⊢ ∃a:a:A ⟶ B[a]. ((λa@0.(F a@0 (a a@0))) = b ∈ (a:A ⟶ C[a]))
BY
{ (Assert ∀a:A. ∃bb:B[a]. ((F a bb) = (b a) ∈ C[a]) BY
(ParallelOp -2 THEN Auto THEN BackThruHyp' (-1) THEN Auto)) }
1
1. [A] : Type
2. [B] : A ⟶ Type
3. [C] : A ⟶ Type
4. ∀a:A. ∃f:B[a] ⟶ C[a]. Bij(B[a];C[a];f)
5. F : a:A ⟶ B[a] ⟶ C[a]
6. ∀a:A. Bij(B[a];C[a];F a)
7. b : a:A ⟶ C[a]
8. ∀a:A. ∃bb:B[a]. ((F a bb) = (b a) ∈ C[a])
⊢ ∃a:a:A ⟶ B[a]. ((λa@0.(F a@0 (a a@0))) = b ∈ (a:A ⟶ C[a]))
Latex:
Latex:
1. [A] : Type
2. [B] : A {}\mrightarrow{} Type
3. [C] : A {}\mrightarrow{} Type
4. \mforall{}a:A. \mexists{}f:B[a] {}\mrightarrow{} C[a]. Bij(B[a];C[a];f)
5. F : a:A {}\mrightarrow{} B[a] {}\mrightarrow{} C[a]
6. \mforall{}a:A. Bij(B[a];C[a];F a)
7. b : a:A {}\mrightarrow{} C[a]
\mvdash{} \mexists{}a:a:A {}\mrightarrow{} B[a]. ((\mlambda{}a@0.(F a@0 (a a@0))) = b)
By
Latex:
(Assert \mforall{}a:A. \mexists{}bb:B[a]. ((F a bb) = (b a)) BY
(ParallelOp -2 THEN Auto THEN BackThruHyp' (-1) THEN Auto))
Home
Index