Step
*
1
of Lemma
function_functionality_wrt_equipollent
1. [A] : Type
2. [B] : A ⟶ Type
3. [C] : A ⟶ Type
4. ∀a:A. ∃f:B[a] ⟶ C[a]. Bij(B[a];C[a];f)
5. F : a:A ⟶ B[a] ⟶ C[a]
6. ∀a:A. Bij(B[a];C[a];F a)
⊢ Bij(a:A ⟶ B[a];a:A ⟶ C[a];λf,a. (F a (f a)))
BY
{ (RepeatFor 2 (D 0) THEN Reduce 0 THEN Auto) }
1
1. A : Type
2. B : A ⟶ Type
3. C : A ⟶ Type
4. ∀a:A. ∃f:B[a] ⟶ C[a]. Bij(B[a];C[a];f)
5. F : a:A ⟶ B[a] ⟶ C[a]
6. ∀a:A. Bij(B[a];C[a];F a)
7. a1 : a:A ⟶ B[a]
8. a2 : a:A ⟶ B[a]
9. (λa.(F a (a1 a))) = (λa.(F a (a2 a))) ∈ (a:A ⟶ C[a])
⊢ a1 = a2 ∈ (a:A ⟶ B[a])
2
1. [A] : Type
2. [B] : A ⟶ Type
3. [C] : A ⟶ Type
4. ∀a:A. ∃f:B[a] ⟶ C[a]. Bij(B[a];C[a];f)
5. F : a:A ⟶ B[a] ⟶ C[a]
6. ∀a:A. Bij(B[a];C[a];F a)
7. b : a:A ⟶ C[a]
⊢ ∃a:a:A ⟶ B[a]. ((λa@0.(F a@0 (a a@0))) = b ∈ (a:A ⟶ C[a]))
Latex:
Latex:
1. [A] : Type
2. [B] : A {}\mrightarrow{} Type
3. [C] : A {}\mrightarrow{} Type
4. \mforall{}a:A. \mexists{}f:B[a] {}\mrightarrow{} C[a]. Bij(B[a];C[a];f)
5. F : a:A {}\mrightarrow{} B[a] {}\mrightarrow{} C[a]
6. \mforall{}a:A. Bij(B[a];C[a];F a)
\mvdash{} Bij(a:A {}\mrightarrow{} B[a];a:A {}\mrightarrow{} C[a];\mlambda{}f,a. (F a (f a)))
By
Latex:
(RepeatFor 2 (D 0) THEN Reduce 0 THEN Auto)
Home
Index