Nuprl Lemma : not-not-finite-all-or-exists

[T:Type]. (finite(T)  (∀P:T ⟶ ℙ(¬¬((∀i:T. P[i]) ∨ (∃i:T. P[i]))))))


Proof




Definitions occuring in Statement :  finite: finite(T) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] not: ¬A finite: finite(T) exists: x:A. B[x] false: False or: P ∨ Q so_apply: x[s] subtype_rel: A ⊆B prop: equipollent: B decidable: Dec(P) nat: so_lambda: λ2x.t[x] biject: Bij(A;B;f) and: P ∧ Q surject: Surj(A;B;f) uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  not-not-finite-xmiddle istype-void subtype_rel_self finite_wf istype-universe equipollent_inversion int_seg_wf decidable__exists_int_seg not_wf decidable__not iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt independent_functionElimination dependent_functionElimination productElimination voidElimination sqequalRule functionIsType universeIsType unionIsType applyEquality because_Cache instantiate universeEquality productIsType natural_numberEquality setElimination rename lambdaEquality_alt unionElimination inrFormation_alt inlFormation_alt dependent_pairFormation_alt equalitySymmetry equalityTransitivity independent_isectElimination

Latex:
\mforall{}[T:Type].  (finite(T)  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  (\mneg{}\mneg{}((\mforall{}i:T.  P[i])  \mvee{}  (\mexists{}i:T.  (\mneg{}P[i]))))))



Date html generated: 2020_05_19-PM-10_00_53
Last ObjectModification: 2019_10_24-AM-11_29_47

Theory : equipollence!!cardinality!


Home Index