Nuprl Lemma : not-not-finite-xmiddle-1

[T:Type]. ((∃n:ℕ. ∃f:ℕn ⟶ T. Surj(ℕn;T;f))  (∀P:T ⟶ ℙ(¬¬(∀i:T. (P[i] ∨ P[i]))))))


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] not: ¬A false: False exists: x:A. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] surject: Surj(A;B;f) or: P ∨ Q subtype_rel: A ⊆B prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  not-not-all-int_seg-xmiddle int_seg_wf istype-void subtype_rel_self istype-nat surject_wf istype-universe iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt thin sqequalHypSubstitution productElimination extract_by_obid dependent_functionElimination natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality_alt applyEquality hypothesisEquality universeIsType isectElimination independent_functionElimination voidElimination functionIsType unionIsType instantiate universeEquality productIsType functionIsTypeImplies inhabitedIsType unionElimination inlFormation_alt equalityTransitivity equalitySymmetry independent_isectElimination inrFormation_alt

Latex:
\mforall{}[T:Type].  ((\mexists{}n:\mBbbN{}.  \mexists{}f:\mBbbN{}n  {}\mrightarrow{}  T.  Surj(\mBbbN{}n;T;f))  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  (\mneg{}\mneg{}(\mforall{}i:T.  (P[i]  \mvee{}  (\mneg{}P[i]))))))



Date html generated: 2020_05_19-PM-10_00_45
Last ObjectModification: 2019_10_24-AM-10_43_14

Theory : equipollence!!cardinality!


Home Index