Nuprl Lemma : not-not-finite-xmiddle-1
∀[T:Type]. ((∃n:ℕ. ∃f:ℕn ⟶ T. Surj(ℕn;T;f)) 
⇒ (∀P:T ⟶ ℙ. (¬¬(∀i:T. (P[i] ∨ (¬P[i]))))))
Proof
Definitions occuring in Statement : 
surject: Surj(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
surject: Surj(A;B;f)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
not-not-all-int_seg-xmiddle, 
int_seg_wf, 
istype-void, 
subtype_rel_self, 
istype-nat, 
surject_wf, 
istype-universe, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
dependent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
universeIsType, 
isectElimination, 
independent_functionElimination, 
voidElimination, 
functionIsType, 
unionIsType, 
instantiate, 
universeEquality, 
productIsType, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
inlFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
inrFormation_alt
Latex:
\mforall{}[T:Type].  ((\mexists{}n:\mBbbN{}.  \mexists{}f:\mBbbN{}n  {}\mrightarrow{}  T.  Surj(\mBbbN{}n;T;f))  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  (\mneg{}\mneg{}(\mforall{}i:T.  (P[i]  \mvee{}  (\mneg{}P[i]))))))
Date html generated:
2020_05_19-PM-10_00_45
Last ObjectModification:
2019_10_24-AM-10_43_14
Theory : equipollence!!cardinality!
Home
Index