Nuprl Lemma : product_functionality_wrt_equipollent

[A,B,C,D:Type].  (A   A × B × D)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] implies:  Q product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T uimplies: supposing a guard: {T}
Lemmas referenced :  product_functionality_wrt_equipollent_right equipollent_wf product_functionality_wrt_equipollent_left equipollent_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_functionElimination hypothesis universeEquality independent_isectElimination productEquality

Latex:
\mforall{}[A,B,C,D:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  \msim{}  D  {}\mRightarrow{}  A  \mtimes{}  C  \msim{}  B  \mtimes{}  D)



Date html generated: 2016_05_14-PM-04_00_00
Last ObjectModification: 2015_12_26-PM-07_44_31

Theory : equipollence!!cardinality!


Home Index