Nuprl Lemma : product_functionality_wrt_equipollent
∀[A,B,C,D:Type].  (A ~ B 
⇒ C ~ D 
⇒ A × C ~ B × D)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
product_functionality_wrt_equipollent_right, 
equipollent_wf, 
product_functionality_wrt_equipollent_left, 
equipollent_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
universeEquality, 
independent_isectElimination, 
productEquality
Latex:
\mforall{}[A,B,C,D:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  \msim{}  D  {}\mRightarrow{}  A  \mtimes{}  C  \msim{}  B  \mtimes{}  D)
Date html generated:
2016_05_14-PM-04_00_00
Last ObjectModification:
2015_12_26-PM-07_44_31
Theory : equipollence!!cardinality!
Home
Index