Nuprl Lemma : PFan_wf

PFan{i:l}() ∈ ℙ'


Proof




Definitions occuring in Statement :  PFan: PFan{i:l}() prop: member: t ∈ T
Definitions unfolded in proof :  PFan: PFan{i:l}() member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] exists: x:A. B[x]
Lemmas referenced :  all_wf nat_wf list_wf bool_wf decidable_wf iseg_wf not_wf equal_wf map_wf int_seg_wf int_seg_subtype_nat false_wf pi1_wf upto_wf pi2_wf exists_wf subtype_rel_dep_function subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality functionEquality productEquality because_Cache functionExtensionality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation productElimination independent_pairEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
PFan\{i:l\}()  \mmember{}  \mBbbP{}'



Date html generated: 2017_04_17-AM-09_39_10
Last ObjectModification: 2017_02_27-PM-05_35_54

Theory : fan-theorem


Home Index