Nuprl Lemma : alt-wkl!_wf

[T:Type]. (WKL!(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  alt-wkl!: WKL!(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q and: P ∧ Q nat: all: x:A. B[x] prop: alt-wkl!: WKL!(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe istype-nat altpath_wf sq_exists_wf alt-one-path_wf altunbounded_wf alttree_wf bool_wf int_seg_wf nat_wf
Rules used in proof :  universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality Error :universeIsType,  Error :functionIsType,  because_Cache Error :lambdaEquality_alt,  productEquality hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid setEquality functionEquality sqequalRule cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (WKL!(T)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_46_30
Last ObjectModification: 2019_06_06-PM-01_53_04

Theory : fan-theorem


Home Index