Nuprl Lemma : alt-wkl!_wf
∀[T:Type]. (WKL!(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
alt-wkl!: WKL!(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
alt-wkl!: WKL!(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
istype-nat, 
altpath_wf, 
sq_exists_wf, 
alt-one-path_wf, 
altunbounded_wf, 
alttree_wf, 
bool_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
universeEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
Error :universeIsType, 
Error :functionIsType, 
because_Cache, 
Error :lambdaEquality_alt, 
productEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
setEquality, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  (WKL!(T)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_46_30
Last ObjectModification:
2019_06_06-PM-01_53_04
Theory : fan-theorem
Home
Index