Nuprl Lemma : dfan-iff-twkl!
∀T:Type. ((∃k:ℕ. T ~ ℕk) 
⇒ (Fan_d(T) 
⇐⇒ WKL!(T)))
Proof
Definitions occuring in Statement : 
twkl!: WKL!(T)
, 
dfan: Fan_d(T)
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
dfan-implies-twkl!, 
dfan_wf, 
twkl!-implies-dfan, 
twkl!_wf, 
exists_wf, 
nat_wf, 
equipollent_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
universeEquality
Latex:
\mforall{}T:Type.  ((\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  (Fan\_d(T)  \mLeftarrow{}{}\mRightarrow{}  WKL!(T)))
Date html generated:
2016_05_14-PM-04_12_06
Last ObjectModification:
2015_12_26-PM-07_54_10
Theory : fan-theorem
Home
Index