Nuprl Lemma : dfan-iff-twkl!

T:Type. ((∃k:ℕ~ ℕk)  (Fan_d(T) ⇐⇒ WKL!(T)))


Proof




Definitions occuring in Statement :  twkl!: WKL!(T) dfan: Fan_d(T) equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] nat: so_apply: x[s]
Lemmas referenced :  dfan-implies-twkl! dfan_wf twkl!-implies-dfan twkl!_wf exists_wf nat_wf equipollent_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination sqequalRule lambdaEquality natural_numberEquality setElimination rename universeEquality

Latex:
\mforall{}T:Type.  ((\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  (Fan\_d(T)  \mLeftarrow{}{}\mRightarrow{}  WKL!(T)))



Date html generated: 2016_05_14-PM-04_12_06
Last ObjectModification: 2015_12_26-PM-07_54_10

Theory : fan-theorem


Home Index