Nuprl Lemma : dfan-implies-twkl!

[T:Type]. ((∃size:ℕ~ ℕsize)  Fan_d(T)  WKL!(T))


Proof




Definitions occuring in Statement :  twkl!: WKL!(T) dfan: Fan_d(T) equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  nat: exists: x:A. B[x] prop: subtype_rel: A ⊆B and: P ∧ Q false: False not: ¬A all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  fan-implies-barred-not-unbounded fan-implies-bar-sep istype-universe int_seg_wf equipollent_wf istype-nat dfan_wf dbar_wf unbounded-list-predicate_wf subtype_rel_self list_wf predicate-not_wf down-closed_wf bar-separation-implies-twkl!
Rules used in proof :  dependent_functionElimination rename setElimination natural_numberEquality Error :functionIsType,  because_Cache universeEquality instantiate applyEquality functionExtensionality Error :universeIsType,  Error :productIsType,  sqequalRule voidElimination independent_functionElimination Error :lambdaFormation_alt,  hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[T:Type].  ((\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  Fan\_d(T)  {}\mRightarrow{}  WKL!(T))



Date html generated: 2019_06_20-PM-02_48_11
Last ObjectModification: 2019_06_05-PM-04_27_12

Theory : fan-theorem


Home Index