Nuprl Lemma : dfan-implies-twkl!
∀[T:Type]. ((∃size:ℕ. T ~ ℕsize) 
⇒ Fan_d(T) 
⇒ WKL!(T))
Proof
Definitions occuring in Statement : 
twkl!: WKL!(T)
, 
dfan: Fan_d(T)
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
false: False
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
fan-implies-barred-not-unbounded, 
fan-implies-bar-sep, 
istype-universe, 
int_seg_wf, 
equipollent_wf, 
istype-nat, 
dfan_wf, 
dbar_wf, 
unbounded-list-predicate_wf, 
subtype_rel_self, 
list_wf, 
predicate-not_wf, 
down-closed_wf, 
bar-separation-implies-twkl!
Rules used in proof : 
dependent_functionElimination, 
rename, 
setElimination, 
natural_numberEquality, 
Error :functionIsType, 
because_Cache, 
universeEquality, 
instantiate, 
applyEquality, 
functionExtensionality, 
Error :universeIsType, 
Error :productIsType, 
sqequalRule, 
voidElimination, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[T:Type].  ((\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  Fan\_d(T)  {}\mRightarrow{}  WKL!(T))
Date html generated:
2019_06_20-PM-02_48_11
Last ObjectModification:
2019_06_05-PM-04_27_12
Theory : fan-theorem
Home
Index