Nuprl Lemma : fan-implies-barred-not-unbounded

[T:Type]. (Fan_d(T)  (∀A:(T List) ⟶ ℙ(dbar(T;A)  (down-closed(T;¬(A)) ∧ Unbounded(¬(A)))))))


Proof




Definitions occuring in Statement :  unbounded-list-predicate: Unbounded(A) down-closed: down-closed(T;X) dfan: Fan_d(T) dbar: dbar(T;X) predicate-not: ¬(A) list: List uall: [x:A]. B[x] prop: all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  predicate-not: ¬(A) true: True cand: c∧ B squash: T less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} R-closed: R-closed(T;x.X[x];a,b.R[a; b]) down-closed: down-closed(T;X) less_than': less_than'(a;b) le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: unbounded-list-predicate: Unbounded(A) exists: x:A. B[x] ubar: ubar(T;X) prop: subtype_rel: A ⊆B and: P ∧ Q dfan: Fan_d(T) false: False not: ¬A all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  select-upto top_wf subtype_rel_list select-map length_wf map-length int_seg_subtype_nat length_upto iff_weakening_equal istype-nat map_length_nat true_wf squash_wf le_wf iseg_select upto_wf int_seg_properties int_seg_wf map_wf istype-false istype-less_than less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert int_formula_prop_eq_lemma int_formula_prop_less_lemma intformeq_wf intformless_wf decidable__lt select_wf assert_of_lt_int eqtt_to_assert lt_int_wf istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties istype-universe dfan_wf dbar_wf unbounded-list-predicate_wf subtype_rel_self list_wf predicate-not_wf down-closed_wf
Rules used in proof :  baseClosed imageMemberEquality imageElimination closedConclusion cumulativity promote_hyp Error :equalityIstype,  equalitySymmetry equalityTransitivity equalityElimination independent_pairFormation Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation independent_isectElimination unionElimination natural_numberEquality rename setElimination addEquality Error :dependent_set_memberEquality_alt,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  Error :lambdaEquality_alt,  Error :functionIsType,  universeEquality instantiate applyEquality functionExtensionality isectElimination extract_by_obid Error :universeIsType,  Error :productIsType,  sqequalRule voidElimination because_Cache productElimination hypothesis independent_functionElimination hypothesisEquality dependent_functionElimination sqequalHypSubstitution thin Error :lambdaFormation_alt,  cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type]
    (Fan\_d(T)  {}\mRightarrow{}  (\mforall{}A:(T  List)  {}\mrightarrow{}  \mBbbP{}.  (dbar(T;A)  {}\mRightarrow{}  (\mneg{}(down-closed(T;\mneg{}(A))  \mwedge{}  Unbounded(\mneg{}(A)))))))



Date html generated: 2019_06_20-PM-02_47_25
Last ObjectModification: 2019_06_05-PM-04_39_49

Theory : fan-theorem


Home Index