Nuprl Lemma : iseg_select
∀[T:Type]. ∀l1,l2:T List.  (l1 ≤ l2 
⇐⇒ (||l1|| ≤ ||l2||) c∧ (∀i:ℕ. l1[i] = l2[i] ∈ T supposing i < ||l1||))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
le: A ≤ B
, 
squash: ↓T
, 
less_than: a < b
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
uiff: uiff(P;Q)
, 
iseg: l1 ≤ l2
, 
guard: {T}
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
append: as @ bs
, 
sq_type: SQType(T)
, 
subtype_rel: A ⊆r B
, 
true: True
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
cons: [a / b]
, 
subtract: n - m
Lemmas referenced : 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
select_wf, 
equal_wf, 
less_than_wf, 
isect_wf, 
nat_wf, 
length_wf, 
le_wf, 
iseg_wf, 
iff_wf, 
list_wf, 
all_wf, 
list_induction, 
equal-wf-base-T, 
nil_iseg, 
nil_wf, 
less_than'_wf, 
non_neg_length, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
false_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
add-is-int-iff, 
length_of_cons_lemma, 
cons_wf, 
equal-wf-T-base, 
iseg_weakening, 
length-append, 
btrue_neq_bfalse, 
bfalse_wf, 
null_cons_lemma, 
null_wf, 
and_wf, 
append_is_nil, 
btrue_wf, 
null_nil_lemma, 
list_ind_cons_lemma, 
length_wf_nat, 
cons_iseg, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
iff_weakening_equal, 
select_cons_hd, 
true_wf, 
squash_wf, 
select_cons_tl, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
full-omega-unsat, 
istype-int, 
istype-void, 
istype-le, 
add_nat_plus, 
istype-less_than, 
nat_plus_properties, 
istype-nat, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
istype-universe, 
subtype_rel_self
Rules used in proof : 
universeEquality, 
independent_functionElimination, 
productElimination, 
imageElimination, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
independent_isectElimination, 
rename, 
setElimination, 
productEquality, 
because_Cache, 
hypothesis, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
addEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
instantiate, 
imageMemberEquality, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
Error :isect_memberFormation_alt
Latex:
\mforall{}[T:Type]
    \mforall{}l1,l2:T  List.    (l1  \mleq{}  l2  \mLeftarrow{}{}\mRightarrow{}  (||l1||  \mleq{}  ||l2||)  c\mwedge{}  (\mforall{}i:\mBbbN{}.  l1[i]  =  l2[i]  supposing  i  <  ||l1||))
Date html generated:
2019_06_20-PM-01_28_45
Last ObjectModification:
2019_03_27-PM-01_24_20
Theory : list_1
Home
Index