Nuprl Lemma : map_length_nat
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  (||map(f;as)|| = ||as|| ∈ ℕ)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
false: False
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
guard: {T}
, 
ge: i ≥ j 
Lemmas referenced : 
list_induction, 
equal_wf, 
nat_wf, 
length_wf_nat, 
map_wf, 
list_wf, 
map_nil_lemma, 
length_of_nil_lemma, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
false_wf, 
le_wf, 
map_cons_lemma, 
length_of_cons_lemma, 
nat_properties, 
length_wf, 
intformand_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
add_nat_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma
Rules used in proof : 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
cumulativity, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
intEquality, 
computeAll, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
lambdaFormation, 
rename, 
applyLambdaEquality, 
setElimination, 
addEquality, 
int_eqEquality, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
axiomEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    (||map(f;as)||  =  ||as||)
Date html generated:
2017_04_17-AM-08_44_32
Last ObjectModification:
2017_02_27-PM-05_02_02
Theory : list_1
Home
Index