Nuprl Lemma : fan-implies-bar-sep
∀[T:Type]. (Fan_d(T) 
⇒ (∃size:ℕ. T ~ ℕsize) 
⇒ BarSep(T;T))
Proof
Definitions occuring in Statement : 
bar-separation: BarSep(T;S)
, 
dfan: Fan_d(T)
, 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
bar-separation: BarSep(T;S)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
, 
tbar: tbar(T;X)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
squash: ↓T
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
false: False
, 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
dfan: Fan_d(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ubar: ubar(T;X)
, 
dbar: dbar(T;X)
, 
dec-predicate: Decidable(X)
, 
cand: A c∧ B
, 
jbar: jbar(T;S;X;Y)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
nat_plus: ℕ+
, 
compose: f o g
, 
pi1: fst(t)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
pi2: snd(t)
, 
sq_stable: SqStable(P)
, 
less_than: a < b
, 
int_iseg: {i...j}
, 
iseg: l1 ≤ l2
, 
select: L[n]
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
jbar_wf, 
dec-predicate_wf, 
list_wf, 
istype-nat, 
equipollent_wf, 
int_seg_wf, 
dfan_wf, 
istype-universe, 
equipollent-zero, 
squash_wf, 
true_wf, 
istype-int, 
iff_weakening_equal, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
tbar_wf, 
decidable__lt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-less_than, 
length_wf, 
unshuffle_wf, 
firstn_wf, 
map_wf, 
pi1_wf, 
pi2_wf, 
decidable__or, 
decidable__exists_int_seg, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
length-unshuffle, 
upto_wf, 
map-length, 
length_upto, 
subtype_rel_function, 
nat_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
nequal_wf, 
less_than_wf, 
div_mul_cancel, 
divide_wfa, 
mul_com, 
subtype_rel_list, 
top_wf, 
list_subtype_base, 
set_subtype_base, 
lelt_wf, 
firstn_upto, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
int_seg_subtype, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
le_wf, 
firstn_map, 
unshuffle-map, 
map-map, 
sq_stable__le, 
div_rem_sum, 
rem_bounds_1, 
length_wf_nat, 
lt_int_wf, 
assert_of_lt_int, 
select_wf, 
list_extensionality, 
int_seg_properties, 
length_firstn, 
subtype_rel_sets_simple, 
select-map, 
select-upto, 
select-firstn, 
unshuffle-iseg, 
firstn-iseg, 
iseg_length, 
firstn_append, 
equal_wf, 
decidable__all_length, 
shuffle_wf, 
length-shuffle, 
unshuffle-shuffle, 
eta_conv, 
bnot_wf, 
not_wf, 
istype-assert, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
decidable__exists_length, 
decidable__all_int_seg, 
decidable__not, 
map_length_nat, 
select-unshuffle, 
not_over_exists, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
Error :universeIsType, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
universeEquality, 
sqequalRule, 
Error :productIsType, 
Error :inlFormation_alt, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
int_eqEquality, 
promote_hyp, 
unionEquality, 
productEquality, 
multiplyEquality, 
addEquality, 
Error :unionIsType, 
Error :equalityIstype, 
sqequalBase, 
closedConclusion, 
functionExtensionality, 
equalityElimination, 
Error :inrFormation_alt, 
Error :setIsType, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairEquality, 
functionEquality, 
baseApply
Latex:
\mforall{}[T:Type].  (Fan\_d(T)  {}\mRightarrow{}  (\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  BarSep(T;T))
Date html generated:
2019_06_20-PM-02_47_21
Last ObjectModification:
2019_03_06-AM-11_06_01
Theory : fan-theorem
Home
Index