Nuprl Lemma : fan-implies-bar-sep

[T:Type]. (Fan_d(T)  (∃size:ℕ~ ℕsize)  BarSep(T;T))


Proof




Definitions occuring in Statement :  bar-separation: BarSep(T;S) dfan: Fan_d(T) equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q bar-separation: BarSep(T;S) all: x:A. B[x] exists: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} prop: tbar: tbar(T;X) iff: ⇐⇒ Q and: P ∧ Q squash: T true: True rev_implies:  Q not: ¬A ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top false: False equipollent: B biject: Bij(A;B;f) surject: Surj(A;B;f) int_seg: {i..j-} lelt: i ≤ j < k dfan: Fan_d(T) so_lambda: λ2x.t[x] so_apply: x[s] ubar: ubar(T;X) dbar: dbar(T;X) dec-predicate: Decidable(X) cand: c∧ B jbar: jbar(T;S;X;Y) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_nzero: -o nequal: a ≠ b ∈  nat_plus: + compose: g pi1: fst(t) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b pi2: snd(t) sq_stable: SqStable(P) less_than: a < b int_iseg: {i...j} iseg: l1 ≤ l2 select: L[n]
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base jbar_wf dec-predicate_wf list_wf istype-nat equipollent_wf int_seg_wf dfan_wf istype-universe equipollent-zero squash_wf true_wf istype-int iff_weakening_equal nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le tbar_wf decidable__lt intformand_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-less_than length_wf unshuffle_wf firstn_wf map_wf pi1_wf pi2_wf decidable__or decidable__exists_int_seg itermMultiply_wf int_term_value_mul_lemma itermAdd_wf int_term_value_add_lemma length-unshuffle upto_wf map-length length_upto subtype_rel_function nat_wf int_seg_subtype_nat istype-false subtype_rel_self nequal_wf less_than_wf div_mul_cancel divide_wfa mul_com subtype_rel_list top_wf list_subtype_base set_subtype_base lelt_wf firstn_upto le_int_wf eqtt_to_assert assert_of_le_int int_seg_subtype eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf le_wf firstn_map unshuffle-map map-map sq_stable__le div_rem_sum rem_bounds_1 length_wf_nat lt_int_wf assert_of_lt_int select_wf list_extensionality int_seg_properties length_firstn subtype_rel_sets_simple select-map select-upto select-firstn unshuffle-iseg firstn-iseg iseg_length firstn_append equal_wf decidable__all_length shuffle_wf length-shuffle unshuffle-shuffle eta_conv bnot_wf not_wf istype-assert bool_cases iff_transitivity assert_of_bnot decidable__exists_length decidable__all_int_seg decidable__not map_length_nat select-unshuffle not_over_exists equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination setElimination rename because_Cache hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination Error :universeIsType,  hypothesisEquality Error :inhabitedIsType,  Error :functionIsType,  universeEquality sqequalRule Error :productIsType,  Error :inlFormation_alt,  applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination independent_pairFormation int_eqEquality promote_hyp unionEquality productEquality multiplyEquality addEquality Error :unionIsType,  Error :equalityIstype,  sqequalBase closedConclusion functionExtensionality equalityElimination Error :inrFormation_alt,  Error :setIsType,  hyp_replacement applyLambdaEquality independent_pairEquality functionEquality baseApply

Latex:
\mforall{}[T:Type].  (Fan\_d(T)  {}\mRightarrow{}  (\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)  {}\mRightarrow{}  BarSep(T;T))



Date html generated: 2019_06_20-PM-02_47_21
Last ObjectModification: 2019_03_06-AM-11_06_01

Theory : fan-theorem


Home Index