Nuprl Lemma : firstn_upto
∀[n,m:ℕ].  (firstn(n;upto(m)) ~ if n ≤z m then upto(n) else upto(m) fi )
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
firstn: firstn(n;as)
, 
le_int: i ≤z j
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
le_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
le_wf, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
equal_wf, 
nat_wf, 
upto_decomp, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
firstn_append, 
upto_wf, 
subtype_rel_list, 
int_seg_wf, 
top_wf, 
map_wf, 
subtract_wf, 
length_upto, 
length_wf, 
firstn_all, 
decidable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
because_Cache, 
isect_memberFormation, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
sqequalAxiom, 
isect_memberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
addEquality, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality
Latex:
\mforall{}[n,m:\mBbbN{}].    (firstn(n;upto(m))  \msim{}  if  n  \mleq{}z  m  then  upto(n)  else  upto(m)  fi  )
Date html generated:
2017_04_17-AM-08_00_55
Last ObjectModification:
2017_02_27-PM-04_32_07
Theory : list_1
Home
Index