Nuprl Lemma : firstn_upto

[n,m:ℕ].  (firstn(n;upto(m)) if n ≤then upto(n) else upto(m) fi )


Proof




Definitions occuring in Statement :  upto: upto(n) firstn: firstn(n;as) le_int: i ≤j nat: ifthenelse: if then else fi  uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} prop: int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B subtype_rel: A ⊆B
Lemmas referenced :  le_int_wf bool_wf equal-wf-T-base assert_wf le_wf lt_int_wf less_than_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf nat_wf upto_decomp nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf firstn_append upto_wf subtype_rel_list int_seg_wf top_wf map_wf subtract_wf length_upto length_wf firstn_all decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis equalityTransitivity equalitySymmetry baseClosed because_Cache isect_memberFormation lambdaFormation unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination sqequalRule dependent_functionElimination sqequalAxiom isect_memberEquality dependent_set_memberEquality independent_pairFormation addEquality natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality computeAll applyEquality

Latex:
\mforall{}[n,m:\mBbbN{}].    (firstn(n;upto(m))  \msim{}  if  n  \mleq{}z  m  then  upto(n)  else  upto(m)  fi  )



Date html generated: 2017_04_17-AM-08_00_55
Last ObjectModification: 2017_02_27-PM-04_32_07

Theory : list_1


Home Index