Nuprl Lemma : upto_decomp

[m:ℕ]. ∀[n:ℕ1].  (upto(m) upto(n) map(λx.(x n);upto(m n)))


Proof




Definitions occuring in Statement :  upto: upto(n) map: map(f;as) append: as bs int_seg: {i..j-} nat: uall: [x:A]. B[x] lambda: λx.A[x] subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T upto: upto(n) nat: int_seg: {i..j-} uimplies: supposing a guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  subtract-add-cancel zero-add subtract_wf from-upto-shift int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties from-upto-split nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalAxiom hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality sqequalRule isect_memberEquality independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache

Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m  +  1].    (upto(m)  \msim{}  upto(n)  @  map(\mlambda{}x.(x  +  n);upto(m  -  n)))



Date html generated: 2016_05_14-PM-02_03_34
Last ObjectModification: 2016_01_15-AM-08_06_15

Theory : list_1


Home Index