Nuprl Lemma : length-unshuffle

[T:Type]. ∀[L:T List].  (||unshuffle(L)|| ||L|| ÷ 2)


Proof




Definitions occuring in Statement :  unshuffle: unshuffle(L) length: ||as|| list: List uall: [x:A]. B[x] divide: n ÷ m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T unshuffle: unshuffle(L) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  less_than': less_than'(a;b) bfalse: ff true: True cons: [a b] iff: ⇐⇒ Q rev_implies:  Q divide: n ÷ m nat_plus: + int_nzero: -o nequal: a ≠ b ∈  subtract: m
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self non_neg_length length_wf nat_wf le_wf lt_int_wf uiff_transitivity equal-wf-T-base bool_wf assert_wf less_than_wf eqtt_to_assert assert_of_lt_int length_of_nil_lemma istype-false le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int length_of_cons_lemma tl_wf list-cases reduce_tl_nil_lemma product_subtype_list reduce_tl_cons_lemma length_tl add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf iff_weakening_equal add_nat_wf divide_wf equal_wf divide_wfa nequal_wf div_rec_case add-associates add-swap add-commutes zero-add istype-nat length_wf_nat list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  productElimination unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption imageElimination cumulativity intEquality equalityElimination baseClosed promote_hyp pointwiseFunctionality baseApply closedConclusion addEquality imageMemberEquality Error :equalityIstype,  sqequalBase Error :isectIsTypeImplies,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (||unshuffle(L)||  \msim{}  ||L||  \mdiv{}  2)



Date html generated: 2019_06_20-PM-01_47_34
Last ObjectModification: 2019_03_06-AM-10_30_07

Theory : list_1


Home Index