Nuprl Lemma : firstn-iseg

[T:Type]. ∀L:T List. ∀n:ℕ.  firstn(n;L) ≤ L


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 firstn: firstn(n;as) list: List nat: uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: so_apply: x[s] implies:  Q prop: firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A cand: c∧ B ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction all_wf nat_wf iseg_wf firstn_wf list_wf list_ind_nil_lemma nil_iseg nil_wf list_ind_cons_lemma lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf cons_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf cons_iseg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis cumulativity setElimination rename independent_functionElimination because_Cache dependent_functionElimination universeEquality isect_memberEquality voidElimination voidEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate independent_pairFormation dependent_set_memberEquality int_eqEquality intEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}n:\mBbbN{}.    firstn(n;L)  \mleq{}  L



Date html generated: 2017_04_17-AM-08_01_52
Last ObjectModification: 2017_02_27-PM-04_32_00

Theory : list_1


Home Index