Nuprl Lemma : select-firstn

[L:Top List]. ∀[n:ℕ]. ∀[x:ℕn].  (firstn(n;L)[x] L[x])


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) select: L[n] list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a le: A ≤ B prop: top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt unit: Unit bool: 𝔹 less_than': less_than'(a;b) squash: T less_than: a < b sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] colength: colength(L) cons: [a b] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] it: nil: [] select: L[n] so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) firstn: firstn(n;as) guard: {T} subtype_rel: A ⊆B ge: i ≥  rev_implies:  Q iff: ⇐⇒ Q true: True cand: c∧ B int_iseg: {i...j}
Lemmas referenced :  list_wf nat_wf int_seg_wf top_wf length_wf decidable__le equal_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt int_seg_properties assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf list_ind_cons_lemma length_of_cons_lemma decidable__equal_int int_subtype_base set_subtype_base subtype_base_sq int_term_value_subtract_lemma itermSubtract_wf subtract_wf le_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf spread_cons_lemma product_subtype_list base_wf stuck-spread list_ind_nil_lemma length_of_nil_lemma list-cases less_than_irreflexivity less_than_transitivity1 colength_wf_list equal-wf-T-base less_than_wf ge_wf int_term_value_constant_lemma itermConstant_wf nat_properties subtract-add-cancel iff_weakening_equal false_wf add-is-int-iff full-omega-unsat length_firstn_eq true_wf squash_wf firstn_wf select_cons_tl_sq
Rules used in proof :  isect_memberEquality sqequalRule natural_numberEquality sqequalAxiom unionElimination because_Cache rename setElimination hypothesisEquality hypothesis isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_isectElimination independent_functionElimination equalitySymmetry equalityTransitivity lambdaFormation productElimination computeAll voidEquality voidElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_pairFormation dependent_set_memberEquality equalityElimination imageElimination cumulativity instantiate addEquality applyLambdaEquality hypothesis_subsumption promote_hyp baseClosed applyEquality intWeakElimination universeEquality imageMemberEquality productEquality closedConclusion baseApply pointwiseFunctionality approximateComputation

Latex:
\mforall{}[L:Top  List].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbN{}n].    (firstn(n;L)[x]  \msim{}  L[x])



Date html generated: 2018_05_21-PM-00_40_01
Last ObjectModification: 2018_05_18-PM-04_18_05

Theory : list_1


Home Index