Nuprl Lemma : unshuffle_wf

[T:Type]. ∀[L:T List].  (unshuffle(L) ∈ (T × T) List)


Proof




Definitions occuring in Statement :  unshuffle: unshuffle(L) list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T unshuffle: unshuffle(L) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b cons: [a b] true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf length_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt lelt_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int nil_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot cons_wf hd_wf tl_wf list-cases length_of_nil_lemma reduce_tl_nil_lemma product_subtype_list length_of_cons_lemma reduce_tl_cons_lemma itermAdd_wf int_term_value_add_lemma length_tl iff_weakening_equal nat_wf length_wf_nat list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity because_Cache productElimination unionElimination applyEquality applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality imageElimination equalityElimination productEquality promote_hyp instantiate independent_pairEquality addEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    (unshuffle(L)  \mmember{}  (T  \mtimes{}  T)  List)



Date html generated: 2017_04_17-AM-08_56_48
Last ObjectModification: 2017_02_27-PM-05_13_36

Theory : list_1


Home Index