Nuprl Lemma : bar-separation-implies-twkl!
∀[T:Type]
  ((∃size:ℕ. T ~ ℕsize)
  ⇒ BarSep(T;T)
  ⇒ (∀A:(T List) ⟶ ℙ. (dbar(T;A) ⇒ (¬(down-closed(T;¬(A)) ∧ Unbounded(¬(A))))))
  ⇒ WKL!(T))
Proof
Definitions occuring in Statement : 
twkl!: WKL!(T), 
unbounded-list-predicate: Unbounded(A), 
down-closed: down-closed(T;X), 
bar-separation: BarSep(T;S), 
dbar: dbar(T;X), 
predicate-not: ¬(A), 
equipollent: A ~ B, 
list: T List, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
compose: f o g, 
tbar: tbar(T;X), 
is-path: is-path(A;f), 
sq_exists: ∃x:A [B[x]], 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
nil: [], 
lt_int: i <z j, 
from-upto: [n, m), 
upto: upto(n), 
subtract: n - m, 
pi1: fst(t), 
finite-type: finite-type(T), 
nat_plus: ℕ+, 
label: ...$L... t, 
bnot: ¬bb, 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
eff-unique-path: eff-unique-path(T;A), 
jbar: jbar(T;S;X;Y), 
bar-separation: BarSep(T;S), 
less_than: a < b, 
select: L[n], 
l_member: (x ∈ l), 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
inject: Inj(A;B;f), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
lelt: i ≤ j < k, 
ge: i ≥ j , 
int_seg: {i..j-}, 
top: Top, 
cons: [a / b], 
true: True, 
sq_type: SQType(T), 
less_than': less_than'(a;b), 
le: A ≤ B, 
surject: Surj(A;B;f), 
biject: Bij(A;B;f), 
equipollent: A ~ B, 
squash: ↓T, 
sq_stable: SqStable(P), 
guard: {T}, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
cand: A c∧ B, 
unbounded-list-predicate: Unbounded(A), 
predicate-not: ¬(A), 
R-closed: R-closed(T;x.X[x];a,b.R[a; b]), 
down-closed: down-closed(T;X), 
dbar: dbar(T;X), 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
dec-predicate: Decidable(X), 
nat: ℕ, 
exists: ∃x:A. B[x], 
false: False, 
subtype_rel: A ⊆r B, 
not: ¬A, 
and: P ∧ Q, 
prop: ℙ, 
member: t ∈ T, 
all: ∀x:A. B[x], 
twkl!: WKL!(T), 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
add-zero, 
zero-mul, 
add-mul-special, 
minus-one-mul, 
minus-add, 
map-map, 
upto_decomp, 
add_functionality_wrt_eq, 
primrec-wf2, 
decidable__equal_list, 
is-path_wf, 
subtract-add-cancel, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
map_cons_lemma, 
map_append_sq, 
upto_decomp1, 
primrec_wf, 
assert_of_le_int, 
bnot_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_wf, 
le_int_wf, 
equal-wf-base, 
uiff_transitivity, 
length-map, 
primrec-unroll, 
subtract-1-ge-0, 
map_nil_lemma, 
istype-base, 
stuck-spread, 
primrec0_lemma, 
ge_wf, 
btrue_neq_bfalse, 
member-implies-null-eq-bfalse, 
btrue_wf, 
surject_wf, 
equipollent_inversion, 
finite-type-iff-list, 
nat_plus_properties, 
add_nat_wf, 
add_nat_plus, 
select-upto, 
map-length, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
select_upto, 
false_wf, 
add-is-int-iff, 
select-append, 
length_upto, 
top_wf, 
subtype_rel_list, 
select-map, 
le_weakening2, 
iseg_select, 
istype-false, 
int_seg_subtype_nat, 
nat_wf, 
subtype_rel_function, 
upto_wf, 
map_wf, 
iff_weakening_equal, 
select_append_back, 
true_wf, 
squash_wf, 
non_neg_length, 
select-cons-hd, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
itermSubtract_wf, 
subtract_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
length-singleton, 
length-append, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
decidable__not, 
cons_member, 
subtype_rel_sets_simple, 
member_singleton, 
select_wf, 
length_wf, 
eff-unique-path_wf, 
istype-assert, 
null_cons_lemma, 
istype-true, 
null_nil_lemma, 
nil_wf, 
cons_wf, 
append_wf, 
equal_wf, 
l_member_wf, 
null_wf, 
assert_wf, 
not_wf, 
list_induction, 
decidable__equal_int_seg, 
istype-less_than, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
length_of_cons_lemma, 
product_subtype_list, 
subtype_base_sq, 
length_of_nil_lemma, 
list-cases, 
istype-le, 
sq_stable_from_decidable, 
sq_stable__all, 
tbar_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
length_wf_nat, 
istype-int, 
iseg_wf, 
decidable-predicate-not, 
istype-universe, 
int_seg_wf, 
equipollent_wf, 
istype-nat, 
bar-separation_wf, 
istype-void, 
subtype_rel_self, 
predicate-not_wf, 
dbar_wf, 
unbounded-list-predicate_wf, 
down-closed_wf, 
list_wf, 
dec-predicate_wf
Rules used in proof : 
multiplyEquality, 
Error :dependent_set_memberFormation_alt, 
Error :functionIsTypeImplies, 
axiomEquality, 
independent_pairEquality, 
intWeakElimination, 
Error :functionExtensionality_alt, 
hyp_replacement, 
baseApply, 
pointwiseFunctionality, 
equalityElimination, 
closedConclusion, 
addEquality, 
setEquality, 
productEquality, 
Error :inrFormation_alt, 
Error :inlFormation_alt, 
int_eqEquality, 
approximateComputation, 
applyLambdaEquality, 
Error :isect_memberEquality_alt, 
hypothesis_subsumption, 
cumulativity, 
Error :dependent_set_memberEquality_alt, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
functionEquality, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
intEquality, 
Error :equalityIstype, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
productElimination, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
voidElimination, 
independent_functionElimination, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
natural_numberEquality, 
instantiate, 
applyEquality, 
functionExtensionality, 
universeEquality, 
Error :functionIsType, 
Error :productIsType, 
sqequalRule, 
because_Cache, 
Error :setIsType, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
Error :universeIsType, 
cut, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type]
    ((\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)
    {}\mRightarrow{}  BarSep(T;T)
    {}\mRightarrow{}  (\mforall{}A:(T  List)  {}\mrightarrow{}  \mBbbP{}.  (dbar(T;A)  {}\mRightarrow{}  (\mneg{}(down-closed(T;\mneg{}(A))  \mwedge{}  Unbounded(\mneg{}(A))))))
    {}\mRightarrow{}  WKL!(T))
Date html generated:
2019_06_20-PM-02_48_08
Last ObjectModification:
2019_06_05-PM-04_21_08
Theory : fan-theorem
Home
Index