Nuprl Lemma : select_upto
∀[m:ℕ]. ∀[n:ℕm].  (upto(m)[n] = n ∈ ℤ)
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
select: L[n]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
upto: upto(n)
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtract: n - m
, 
int_seg: {i..j-}
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
nat_properties, 
int_seg_properties, 
add-zero, 
minus-zero, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
select-from-upto
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
axiomEquality
Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m].    (upto(m)[n]  =  n)
Date html generated:
2016_05_14-PM-02_04_20
Last ObjectModification:
2016_01_15-AM-08_04_54
Theory : list_1
Home
Index