Nuprl Lemma : select_upto

[m:ℕ]. ∀[n:ℕm].  (upto(m)[n] n ∈ ℤ)


Proof




Definitions occuring in Statement :  upto: upto(n) select: L[n] int_seg: {i..j-} nat: uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T upto: upto(n) nat: subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtract: m int_seg: {i..j-} sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop:
Lemmas referenced :  nat_wf int_seg_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermConstant_wf itermAdd_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int nat_properties int_seg_properties add-zero minus-zero int_subtype_base set_subtype_base subtype_base_sq select-from-upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality applyEquality lambdaEquality instantiate because_Cache independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality

Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m].    (upto(m)[n]  =  n)



Date html generated: 2016_05_14-PM-02_04_20
Last ObjectModification: 2016_01_15-AM-08_04_54

Theory : list_1


Home Index