Nuprl Lemma : twkl!-implies-dfan

T:Type. ((∃k:ℕ~ ℕk)  WKL!(T)  Fan_d(T))


Proof




Definitions occuring in Statement :  twkl!: WKL!(T) dfan: Fan_d(T) equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q dfan: Fan_d(T) dbar: dbar(T;X) and: P ∧ Q tbar: tbar(T;X) dec-predicate: Decidable(X) ubar: ubar(T;X) member: t ∈ T uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] exists: x:A. B[x] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T true: True upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff top: Top subtype_rel: A ⊆B uimplies: supposing a guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) pi1: fst(t) compose: g cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) equipollent: B biject: Bij(A;B;f) surject: Surj(A;B;f) twkl!: WKL!(T) down-closed: down-closed(T;X) R-closed: R-closed(T;x.X[x];a,b.R[a; b]) upwd-closure: upwd-closure(T;A) let: let unbounded-list-predicate: Unbounded(A) label: ...$L... t uiff: uiff(P;Q) tree-big: tree-big(T;A;n) eff-unique-path: eff-unique-path(T;A) sq_exists: x:{A| B[x]} is-path: is-path(A;f) sq_stable: SqStable(P) compat: l1 || l2
Lemmas referenced :  nil_wf tree-big-monotone dbar_wf list_wf twkl!_wf exists_wf nat_wf equipollent_wf int_seg_wf false_wf le_wf lelt_wf map_nil_lemma map_wf subtype_rel_dep_function int_seg_subtype_nat upto_wf all_wf tree-big-least not-tree-big set_wf tree-big_wf upwd-closure_wf not_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf decidable__tree-big decidable__upwd-closure length_wf compose_wf less_than_wf squash_wf true_wf iff_weakening_equal decidable__lt intformless_wf int_formula_prop_less_lemma subtype_base_sq int_subtype_base add_nat_wf intformeq_wf int_formula_prop_eq_lemma decidable__equal_int non_neg_length equipollent-zero decidable__equal_equipollent length_wf_nat let_wf append_wf subtract_wf iseg_wf iseg_transitivity iseg_append_iff length-append map-length length_upto le_weakening2 length_append subtype_rel_list top_wf itermSubtract_wf int_term_value_subtract_lemma list_extensionality length-map select-map iseg_select and_wf decidable__exists_length decidable__not not_over_exists down-closed_wf unbounded-list-predicate_wf decidable__implies decidable__and2 decidable__equal_list imax_ub imax_wf iseg-map int_seg_subtype upto_iseg select_wf select-upto sq_stable_from_decidable decidable__exists_int_seg iseg_weakening iseg_length common_iseg_compat iseg_same_length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin rename cut hypothesis dependent_functionElimination introduction extract_by_obid isectElimination cumulativity hypothesisEquality unionElimination functionExtensionality applyEquality functionEquality universeEquality sqequalRule lambdaEquality natural_numberEquality setElimination dependent_pairFormation dependent_set_memberEquality independent_pairFormation because_Cache imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_functionElimination promote_hyp setEquality productEquality addEquality int_eqEquality intEquality computeAll equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination instantiate addLevel levelHypothesis hyp_replacement inlFormation inrFormation

Latex:
\mforall{}T:Type.  ((\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  WKL!(T)  {}\mRightarrow{}  Fan\_d(T))



Date html generated: 2017_04_17-AM-09_38_44
Last ObjectModification: 2017_02_27-PM-05_43_56

Theory : fan-theorem


Home Index