Nuprl Lemma : common_iseg_compat

[T:Type]. ∀l,l1,l2:T List.  (l1 ≤  l2 ≤  l1 || l2)


Proof




Definitions occuring in Statement :  compat: l1 || l2 iseg: l1 ≤ l2 list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  guard: {T} rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] le: A ≤ B squash: T less_than: a < b and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: uimplies: supposing a so_lambda: λ2x.t[x] prop: member: t ∈ T cand: c∧ B implies:  Q compat: l1 || l2 all: x:A. B[x] uall: [x:A]. B[x] true: True subtype_rel: A ⊆B
Lemmas referenced :  list_wf or_wf iseg_wf iseg_select int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties select_wf equal_wf less_than_wf isect_wf nat_wf all_wf length_wf le_wf squash_wf true_wf istype-int istype-void subtype_rel_self iff_weakening_equal istype-le istype-nat istype-less_than
Rules used in proof :  universeEquality functionEquality inrFormation inlFormation addLevel imageElimination independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation unionElimination natural_numberEquality dependent_functionElimination independent_isectElimination rename setElimination lambdaEquality sqequalRule because_Cache hypothesis hypothesisEquality cumulativity isectElimination extract_by_obid introduction productEquality thin productElimination sqequalHypSubstitution cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :inlFormation_alt,  Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  applyEquality Error :lambdaEquality_alt,  equalityTransitivity equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  imageMemberEquality baseClosed instantiate hyp_replacement applyLambdaEquality Error :productIsType,  Error :functionIsType,  Error :isectIsType,  Error :equalityIstype,  Error :inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}l,l1,l2:T  List.    (l1  \mleq{}  l  {}\mRightarrow{}  l2  \mleq{}  l  {}\mRightarrow{}  l1  ||  l2)



Date html generated: 2019_06_20-PM-01_30_08
Last ObjectModification: 2019_01_10-PM-10_10_57

Theory : list_1


Home Index