Nuprl Lemma : common_iseg_compat
∀[T:Type]. ∀l,l1,l2:T List.  (l1 ≤ l 
⇒ l2 ≤ l 
⇒ l1 || l2)
Proof
Definitions occuring in Statement : 
compat: l1 || l2
, 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
le: A ≤ B
, 
squash: ↓T
, 
less_than: a < b
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
compat: l1 || l2
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
list_wf, 
or_wf, 
iseg_wf, 
iseg_select, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
select_wf, 
equal_wf, 
less_than_wf, 
isect_wf, 
nat_wf, 
all_wf, 
length_wf, 
le_wf, 
squash_wf, 
true_wf, 
istype-int, 
istype-void, 
subtype_rel_self, 
iff_weakening_equal, 
istype-le, 
istype-nat, 
istype-less_than
Rules used in proof : 
universeEquality, 
functionEquality, 
inrFormation, 
inlFormation, 
addLevel, 
imageElimination, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
independent_isectElimination, 
rename, 
setElimination, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
introduction, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
Error :inlFormation_alt, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
applyEquality, 
Error :lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
instantiate, 
hyp_replacement, 
applyLambdaEquality, 
Error :productIsType, 
Error :functionIsType, 
Error :isectIsType, 
Error :equalityIstype, 
Error :inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}l,l1,l2:T  List.    (l1  \mleq{}  l  {}\mRightarrow{}  l2  \mleq{}  l  {}\mRightarrow{}  l1  ||  l2)
Date html generated:
2019_06_20-PM-01_30_08
Last ObjectModification:
2019_01_10-PM-10_10_57
Theory : list_1
Home
Index