Nuprl Lemma : empty-fset-contains-none
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))].  (↑fset-contains-none(eq;{};x.Cs[x]))
Proof
Definitions occuring in Statement : 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x]), 
empty-fset: {}, 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
fset-member: a ∈ s, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
deq-member: x ∈b L, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
empty-fset: {}, 
nil: [], 
it: ⋅, 
bfalse: ff, 
prop: ℙ
Lemmas referenced : 
assert-fset-contains-none, 
empty-fset_wf, 
f-subset_wf, 
fset-member_wf, 
fset_wf, 
deq-fset_wf, 
fset-contains-none_wf, 
deq_wf, 
assert_witness
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].    (\muparrow{}fset-contains-none(eq;\{\};x.Cs[x]))
Date html generated:
2016_05_14-PM-03_42_24
Last ObjectModification:
2015_12_26-PM-06_39_39
Theory : finite!sets
Home
Index